File size: 1,794 Bytes
			
			| 47a08e5 3fc9c26 47a08e5 3fc9c26 47a08e5 3fc9c26 4460860 47a08e5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | ---
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-classifier
  results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-classifier
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3165
- Accuracy: 0.8809
- F1: 0.7916
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| No log        | 0      | 0    | 0.6991          | 0.3573   | 0.4668 |
| No log        | 0.6006 | 188  | 0.3642          | 0.8505   | 0.7246 |
| No log        | 1.2013 | 376  | 0.3155          | 0.8761   | 0.7717 |
| 0.3491        | 1.8019 | 564  | 0.3068          | 0.8833   | 0.7972 |
| 0.3491        | 2.4026 | 752  | 0.3198          | 0.8833   | 0.8016 |
| 0.3491        | 3      | 939  | 0.3165          | 0.8809   | 0.7916 |
### Framework versions
- Transformers 4.53.3
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.2
 | 
