Update README.md
Browse files
README.md
CHANGED
@@ -1,50 +1,71 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
- **Context Length:** 512
|
22 |
-
- **Flash Attention:** Enabled
|
23 |
|
24 |
-
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
from transformers import AutoModelForCausalLM
|
29 |
|
30 |
-
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
input_text = "Your prompt here"
|
38 |
-
input_ids = tokenizer.encode(input_text)
|
39 |
-
input_tensor = torch.tensor([input_ids], dtype=torch.long)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
print(generated_text)
|
45 |
-
```
|
46 |
|
47 |
-
|
|
|
48 |
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- pytorch
|
6 |
+
- causal-lm
|
7 |
+
- language-model
|
8 |
+
- flash-attention
|
9 |
+
datasets:
|
10 |
+
- Salesforce/wikitext
|
11 |
+
pipeline_tag: question-answering
|
12 |
+
---
|
13 |
+
|
14 |
+
# PurelyUnfunctionalAI/GibberishGPT
|
15 |
+
|
16 |
+
A lightweight decoder-only transformer language model trained with Flash Attention on the WikiText dataset.
|
17 |
|
18 |
+
## Model Details
|
19 |
|
20 |
+
- **Model Type:** Causal Language Model
|
21 |
+
- **Architecture:** Decoder-only Transformer
|
22 |
+
- **Embedding Size:** 512
|
23 |
+
- **Hidden Layers:** 8
|
24 |
+
- **Attention Heads:** 8
|
25 |
+
- **Context Length:** 512
|
26 |
+
- **Flash Attention:** Enabled
|
27 |
+
- **Training Data:** Salesforce/wikitext
|
28 |
|
29 |
+
## Usage
|
30 |
|
31 |
+
```python
|
32 |
+
import torch
|
33 |
+
import tiktoken
|
34 |
+
from transformers import AutoModelForCausalLM
|
|
|
|
|
35 |
|
36 |
+
# Load the tokenizer
|
37 |
+
tokenizer = tiktoken.get_encoding("gpt2")
|
38 |
|
39 |
+
# Load the model
|
40 |
+
model = AutoModelForCausalLM.from_pretrained("PurelyUnfunctionalAI/GibberishGPT")
|
|
|
41 |
|
42 |
+
# Encode input
|
43 |
+
input_text = "Your prompt here"
|
44 |
+
input_ids = tokenizer.encode(input_text)
|
45 |
+
input_tensor = torch.tensor([input_ids], dtype=torch.long)
|
46 |
|
47 |
+
# Generate
|
48 |
+
output = model.generate(input_tensor, max_length=100)
|
49 |
+
generated_text = tokenizer.decode(output[0].tolist())
|
50 |
+
print(generated_text)
|
51 |
+
```
|
52 |
|
53 |
+
# Limitations
|
|
|
|
|
|
|
54 |
|
55 |
+
- The model has a context length of 512 tokens
|
56 |
+
- It was trained on WikiText data which may not cover specialized domains
|
57 |
+
- As a lightweight model, it may not perform as well as larger LLMs on complex tasks
|
|
|
|
|
58 |
|
59 |
+
# Citation
|
60 |
+
If you use this model in your research, please cite:
|
61 |
|
62 |
+
```
|
63 |
+
@misc{GibberishGPT,
|
64 |
+
author = {Gathara, Michael},
|
65 |
+
title = {GibberishGPT: A Lightweight Language Model with Flash Attention},
|
66 |
+
year = {2025},
|
67 |
+
publisher = {GitHub},
|
68 |
+
journal = {GitHub repository},
|
69 |
+
howpublished = {\url{https://huggingface.co/PurelyUnfunctionalAI/GibberishGPT}}
|
70 |
+
}
|
71 |
+
```
|