--- license: apache-2.0 language: - en base_model: - PygmalionAI/Eleusis-12B pipeline_tag: text-generation --- This is an ONNX optimized version of [Eleusis-12B](https://huggingface.co/PygmalionAI/Eleusis-12B). For a more comprehensive info about the model's capabilities, please visit the original model's repo. ## Inference ### Requirements If you're on a CPU-only machine: ```sh pip install onnxruntime ``` If you have an NVIDIA GPU available: ```sh pip uninstall onnxruntime -y pip install onnxruntime-gpu ``` Make sure you have installed [CUDA Toolkit](https://developer.nvidia.com/cuda-12-4-0-download-archive) and [cuDNN](https://developer.nvidia.com/cudnn) ```sh import onnxruntime as ort from transformers import AutoTokenizer import numpy as np import argparse def generate_text(prompt, num_tokens, model_path, tokenizer_path): tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] session = ort.InferenceSession(model_path, providers=providers) input_ids = tokenizer(prompt, return_tensors="np").input_ids for _ in range(num_tokens): # Create attention mask and position ids attention_mask = np.ones_like(input_ids) position_ids = np.arange(input_ids.shape[1])[None, :] outputs = session.run( output_names=['logits'], input_feed={ 'input_ids': input_ids, 'attention_mask': attention_mask, 'position_ids': position_ids } ) next_token = np.argmax(outputs[0][0, -1, :]) input_ids = np.concatenate([input_ids, [[next_token]]], axis=1) return tokenizer.decode(input_ids[0], skip_special_tokens=True) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Generate text using ONNX model') parser.add_argument('prompt', type=str, help='Input prompt for generation') parser.add_argument('num_tokens', type=int, help='Number of tokens to generate') parser.add_argument('--model_path', type=str, default='model.onnx', help='Path to ONNX model file') parser.add_argument('--tokenizer_path', type=str, default='tokenizer', help='Path to tokenizer directory') args = parser.parse_args() result = generate_text(args.prompt, args.num_tokens, args.model_path, args.tokenizer_path) print(result) ``` ```sh python onnx_inference.py "Once upon a time" 512 --model_path /path/to/model.onnx --tokenizer_path /path/to/model/dir ``` This is an example script, and not properly optimized.