nm-research commited on
Commit
eac4185
·
verified ·
1 Parent(s): f6d0ea8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +331 -94
README.md CHANGED
@@ -308,230 +308,467 @@ guidellm --model neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16 --tar
308
  <th></th>
309
  <th></th>
310
  <th></th>
311
- <th style="text-align: center;" colspan="2" >Instruction Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
312
- <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
313
- <th style="text-align: center;" colspan="2" >Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
314
- <th style="text-align: center;" colspan="2" >RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
315
- <th style="text-align: center;" colspan="2" >Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
316
- <th style="text-align: center;" colspan="2" >Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
317
- <th style="text-align: center;" colspan="2" >Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
318
- <th style="text-align: center;" colspan="2" >Large RAG<br>prefill: 10240 tokens<br>decode: 1536 tokens</th>
319
  </tr>
320
  <tr>
321
  <th>GPU class</th>
322
  <th>Number of GPUs</th>
323
  <th>Model</th>
324
- <th>Cost reduction</th>
325
  <th>Latency (s)</th>
326
- <th>QPS</th>
327
  <th>Latency (s)</th>
328
- <th>QPS</th>
329
  <th>Latency (s)</th>
330
- <th>QPS</th>
331
  <th>Latency (s)</th>
332
- <th>QPS</th>
333
  <th>Latency (s)</th>
334
- <th>QPS</th>
335
  <th>Latency (s)</th>
336
- <th>QPS</th>
337
  <th>Latency (s)</th>
338
- <th>QPS</th>
339
  <th>Latency (s)</th>
340
- <th>QPS</th>
341
  </tr>
342
  </thead>
343
- <tbody>
344
  <tr>
345
  <th rowspan="3" valign="top">A6000</th>
346
  <td>4</td>
347
  <th>deepseek-ai/DeepSeek-R1-Distill-Llama-70B</th>
348
- <td></td>
349
  <td>7.4</td>
350
- <td>151.6</td>
351
  <td>14.9</td>
352
- <td>75.6</td>
353
  <td>7.5</td>
354
- <td>149.1</td>
355
  <td>7.7</td>
356
- <td>146.4</td>
357
  <td>57.2</td>
358
- <td>19.7</td>
359
  <td>58.9</td>
360
- <td>19.1</td>
361
  <td>31.9</td>
362
- <td>35.2</td>
363
  <td>98.4</td>
364
- <td>11.4</td>
365
  </tr>
366
  <tr>
367
  <td>2</td>
368
  <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w8a8</th>
369
  <td>1.93</td>
370
  <td>7.7</td>
371
- <td>291.8</td>
372
  <td>15.2</td>
373
- <td>147.7</td>
374
  <td>7.8</td>
375
- <td>287.5</td>
376
  <td>8.0</td>
377
- <td>282.5</td>
378
  <td>60.7</td>
379
- <td>37.1</td>
380
  <td>60.2</td>
381
- <td>37.4</td>
382
  <td>32.3</td>
383
- <td>69.6</td>
384
  <td>104.0</td>
385
- <td>21.6</td>
386
  </tr>
387
  <tr>
388
  <td>2</td>
389
  <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16</th>
390
  <td>2.83</td>
391
  <td>4.9</td>
392
- <td>457.1</td>
393
  <td>10.0</td>
394
- <td>225.1</td>
395
  <td>5.5</td>
396
- <td>411.5</td>
397
  <td>5.8</td>
398
- <td>388.9</td>
399
  <td>38.9</td>
400
- <td>57.8</td>
401
  <td>39.2</td>
402
- <td>57.4</td>
403
  <td>23.7</td>
404
- <td>94.8</td>
405
  <td>76.6</td>
406
- <td>29.4</td>
407
  </tr>
408
  <tr>
409
  <th rowspan="3" valign="top">A100</th>
410
  <td>2</td>
411
  <th>deepseek-ai/DeepSeek-R1-Distill-Llama-70B</th>
412
- <td></td>
413
  <td>6.4</td>
414
- <td>156.9</td>
415
  <td>12.8</td>
416
- <td>78.8</td>
417
  <td>6.6</td>
418
- <td>152.9</td>
419
  <td>6.7</td>
420
- <td>151.2</td>
421
  <td>50.4</td>
422
- <td>19.9</td>
423
  <td>50.8</td>
424
- <td>19.8</td>
425
  <td>27.0</td>
426
- <td>37.3</td>
427
  <td>85.4</td>
428
- <td>11.8</td>
429
  </tr>
430
  <tr>
431
  <td>2</td>
432
  <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w8a8</th>
433
  <td>1.48</td>
434
  <td>4.1</td>
435
- <td>245.2</td>
436
  <td>8.2</td>
437
- <td>122.6</td>
438
  <td>4.2</td>
439
- <td>238.0</td>
440
  <td>4.3</td>
441
- <td>234.9</td>
442
  <td>32.4</td>
443
- <td>31.0</td>
444
  <td>32.8</td>
445
- <td>30.7</td>
446
  <td>17.6</td>
447
- <td>57.1</td>
448
  <td>90.8</td>
449
- <td>11.1</td>
450
  </tr>
451
  <tr>
452
  <td>1</td>
453
  <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16</th>
454
  <td>2.69</td>
455
  <td>4.6</td>
456
- <td>439.9</td>
457
  <td>9.2</td>
458
- <td>219.7</td>
459
  <td>4.9</td>
460
- <td>406.5</td>
461
  <td>5.2</td>
462
- <td>388.5</td>
463
  <td>35.3</td>
464
- <td>57.0</td>
465
  <td>36.3</td>
466
- <td>55.5</td>
467
  <td>21.2</td>
468
- <td>94.9</td>
469
  <td>68.1</td>
470
- <td>29.5</td>
471
  </tr>
472
  <tr>
473
  <th rowspan="3" valign="top">H100</th>
474
  <td>2</td>
475
  <th>deepseek-ai/DeepSeek-R1-Distill-Llama-70B</th>
476
- <td></td>
477
  <td>3.8</td>
478
- <td>149.0</td>
479
  <td>7.6</td>
480
- <td>74.2</td>
481
  <td>3.9</td>
482
- <td>145.9</td>
483
  <td>3.9</td>
484
- <td>143.9</td>
485
  <td>30.0</td>
486
- <td>18.8</td>
487
  <td>30.4</td>
488
- <td>18.6</td>
489
  <td>16.1</td>
490
- <td>34.9</td>
491
  <td>56.5</td>
492
- <td>10.0</td>
493
  </tr>
494
  <tr>
495
  <td>2</td>
496
  <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-FP8-dynamic</th>
497
  <td>1.39</td>
498
  <td>2.7</td>
499
- <td>209.9</td>
500
  <td>5.3</td>
501
- <td>105.6</td>
502
  <td>2.7</td>
503
- <td>206.7</td>
504
  <td>2.8</td>
505
- <td>203.2</td>
506
  <td>21.1</td>
507
- <td>26.7</td>
508
  <td>21.4</td>
509
- <td>26.4</td>
510
  <td>11.5</td>
511
- <td>48.9</td>
512
  <td>47.2</td>
513
- <td>12.0</td>
514
  </tr>
515
  <tr>
516
  <td>1</td>
517
  <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16</th>
518
  <td>1.83</td>
519
  <td>4.0</td>
520
- <td>276.7</td>
521
  <td>7.9</td>
522
- <td>138.1</td>
523
  <td>4.1</td>
524
- <td>266.2</td>
525
  <td>4.2</td>
526
- <td>262.0</td>
527
  <td>31.2</td>
528
- <td>35.1</td>
529
  <td>31.8</td>
530
- <td>34.4</td>
531
  <td>17.8</td>
532
- <td>61.3</td>
533
  <td>61.4</td>
534
- <td>17.8</td>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535
  </tr>
536
  </tbody>
537
- </table>
 
 
 
 
 
 
 
 
308
  <th></th>
309
  <th></th>
310
  <th></th>
311
+ <th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
312
+ <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
313
+ <th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
314
+ <th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
315
+ <th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
316
+ <th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
317
+ <th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
318
+ <th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
319
  </tr>
320
  <tr>
321
  <th>GPU class</th>
322
  <th>Number of GPUs</th>
323
  <th>Model</th>
324
+ <th>Average cost reduction</th>
325
  <th>Latency (s)</th>
326
+ <th>QPD</th>
327
  <th>Latency (s)</th>
328
+ <th>QPD</th>
329
  <th>Latency (s)</th>
330
+ <th>QPD</th>
331
  <th>Latency (s)</th>
332
+ <th>QPD</th>
333
  <th>Latency (s)</th>
334
+ <th>QPD</th>
335
  <th>Latency (s)</th>
336
+ <th>QPD</th>
337
  <th>Latency (s)</th>
338
+ <th>QPD</th>
339
  <th>Latency (s)</th>
340
+ <th>QPD</th>
341
  </tr>
342
  </thead>
343
+ <tbody style="text-align: center" >
344
  <tr>
345
  <th rowspan="3" valign="top">A6000</th>
346
  <td>4</td>
347
  <th>deepseek-ai/DeepSeek-R1-Distill-Llama-70B</th>
348
+ <td>---</td>
349
  <td>7.4</td>
350
+ <td>152</td>
351
  <td>14.9</td>
352
+ <td>76</td>
353
  <td>7.5</td>
354
+ <td>149</td>
355
  <td>7.7</td>
356
+ <td>146</td>
357
  <td>57.2</td>
358
+ <td>20</td>
359
  <td>58.9</td>
360
+ <td>19</td>
361
  <td>31.9</td>
362
+ <td>35</td>
363
  <td>98.4</td>
364
+ <td>11</td>
365
  </tr>
366
  <tr>
367
  <td>2</td>
368
  <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w8a8</th>
369
  <td>1.93</td>
370
  <td>7.7</td>
371
+ <td>292</td>
372
  <td>15.2</td>
373
+ <td>148</td>
374
  <td>7.8</td>
375
+ <td>287</td>
376
  <td>8.0</td>
377
+ <td>282</td>
378
  <td>60.7</td>
379
+ <td>37</td>
380
  <td>60.2</td>
381
+ <td>37</td>
382
  <td>32.3</td>
383
+ <td>70</td>
384
  <td>104.0</td>
385
+ <td>22</td>
386
  </tr>
387
  <tr>
388
  <td>2</td>
389
  <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16</th>
390
  <td>2.83</td>
391
  <td>4.9</td>
392
+ <td>457</td>
393
  <td>10.0</td>
394
+ <td>225</td>
395
  <td>5.5</td>
396
+ <td>411</td>
397
  <td>5.8</td>
398
+ <td>389</td>
399
  <td>38.9</td>
400
+ <td>58</td>
401
  <td>39.2</td>
402
+ <td>57</td>
403
  <td>23.7</td>
404
+ <td>95</td>
405
  <td>76.6</td>
406
+ <td>29</td>
407
  </tr>
408
  <tr>
409
  <th rowspan="3" valign="top">A100</th>
410
  <td>2</td>
411
  <th>deepseek-ai/DeepSeek-R1-Distill-Llama-70B</th>
412
+ <td>---</td>
413
  <td>6.4</td>
414
+ <td>157</td>
415
  <td>12.8</td>
416
+ <td>79</td>
417
  <td>6.6</td>
418
+ <td>153</td>
419
  <td>6.7</td>
420
+ <td>151</td>
421
  <td>50.4</td>
422
+ <td>20</td>
423
  <td>50.8</td>
424
+ <td>20</td>
425
  <td>27.0</td>
426
+ <td>37</td>
427
  <td>85.4</td>
428
+ <td>12</td>
429
  </tr>
430
  <tr>
431
  <td>2</td>
432
  <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w8a8</th>
433
  <td>1.48</td>
434
  <td>4.1</td>
435
+ <td>245</td>
436
  <td>8.2</td>
437
+ <td>123</td>
438
  <td>4.2</td>
439
+ <td>238</td>
440
  <td>4.3</td>
441
+ <td>235</td>
442
  <td>32.4</td>
443
+ <td>31</td>
444
  <td>32.8</td>
445
+ <td>31</td>
446
  <td>17.6</td>
447
+ <td>57</td>
448
  <td>90.8</td>
449
+ <td>11</td>
450
  </tr>
451
  <tr>
452
  <td>1</td>
453
  <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16</th>
454
  <td>2.69</td>
455
  <td>4.6</td>
456
+ <td>440</td>
457
  <td>9.2</td>
458
+ <td>220</td>
459
  <td>4.9</td>
460
+ <td>407</td>
461
  <td>5.2</td>
462
+ <td>389</td>
463
  <td>35.3</td>
464
+ <td>57</td>
465
  <td>36.3</td>
466
+ <td>55</td>
467
  <td>21.2</td>
468
+ <td>95</td>
469
  <td>68.1</td>
470
+ <td>30</td>
471
  </tr>
472
  <tr>
473
  <th rowspan="3" valign="top">H100</th>
474
  <td>2</td>
475
  <th>deepseek-ai/DeepSeek-R1-Distill-Llama-70B</th>
476
+ <td>---</td>
477
  <td>3.8</td>
478
+ <td>149</td>
479
  <td>7.6</td>
480
+ <td>74</td>
481
  <td>3.9</td>
482
+ <td>146</td>
483
  <td>3.9</td>
484
+ <td>144</td>
485
  <td>30.0</td>
486
+ <td>19</td>
487
  <td>30.4</td>
488
+ <td>19</td>
489
  <td>16.1</td>
490
+ <td>35</td>
491
  <td>56.5</td>
492
+ <td>10</td>
493
  </tr>
494
  <tr>
495
  <td>2</td>
496
  <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-FP8-dynamic</th>
497
  <td>1.39</td>
498
  <td>2.7</td>
499
+ <td>210</td>
500
  <td>5.3</td>
501
+ <td>106</td>
502
  <td>2.7</td>
503
+ <td>207</td>
504
  <td>2.8</td>
505
+ <td>203</td>
506
  <td>21.1</td>
507
+ <td>27</td>
508
  <td>21.4</td>
509
+ <td>26</td>
510
  <td>11.5</td>
511
+ <td>49</td>
512
  <td>47.2</td>
513
+ <td>12</td>
514
  </tr>
515
  <tr>
516
  <td>1</td>
517
  <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16</th>
518
  <td>1.83</td>
519
  <td>4.0</td>
520
+ <td>277</td>
521
  <td>7.9</td>
522
+ <td>138</td>
523
  <td>4.1</td>
524
+ <td>266</td>
525
  <td>4.2</td>
526
+ <td>262</td>
527
  <td>31.2</td>
528
+ <td>35</td>
529
  <td>31.8</td>
530
+ <td>34</td>
531
  <td>17.8</td>
532
+ <td>61</td>
533
  <td>61.4</td>
534
+ <td>18</td>
535
+ </tr>
536
+ </tbody>
537
+ </table>
538
+
539
+ **Use case profiles: prompt tokens / generation tokens
540
+
541
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
542
+
543
+
544
+ ### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
545
+ <table>
546
+ <thead>
547
+ <tr>
548
+ <th></th>
549
+ <th></th>
550
+ <th></th>
551
+ <th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
552
+ <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
553
+ <th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
554
+ <th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
555
+ <th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
556
+ <th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
557
+ <th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
558
+ <th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
559
+ </tr>
560
+ <tr>
561
+ <th>Hardware</th>
562
+ <th>Model</th>
563
+ <th>Average cost reduction</th>
564
+ <th>Maximum throughput (QPS)</th>
565
+ <th>QPD</th>
566
+ <th>Maximum throughput (QPS)</th>
567
+ <th>QPD</th>
568
+ <th>Maximum throughput (QPS)</th>
569
+ <th>QPD</th>
570
+ <th>Maximum throughput (QPS)</th>
571
+ <th>QPD</th>
572
+ <th>Maximum throughput (QPS)</th>
573
+ <th>QPD</th>
574
+ <th>Maximum throughput (QPS)</th>
575
+ <th>QPD</th>
576
+ <th>Maximum throughput (QPS)</th>
577
+ <th>QPD</th>
578
+ <th>Maximum throughput (QPS)</th>
579
+ <th>QPD</th>
580
+ </tr>
581
+ </thead>
582
+ <tbody style="text-align: center" >
583
+ <tr>
584
+ <th rowspan="3" valign="top">A6000x4</th>
585
+ <th>deepseek-ai/DeepSeek-R1-Distill-Llama-70B</th>
586
+ <td>---</td>
587
+ <td>3.65</td>
588
+ <td>4102</td>
589
+ <td>1.56</td>
590
+ <td>1757</td>
591
+ <td>1.90</td>
592
+ <td>2143</td>
593
+ <td>1.48</td>
594
+ <td>1665</td>
595
+ <td>0.44</td>
596
+ <td>493</td>
597
+ <td>0.34</td>
598
+ <td>380</td>
599
+ <td>0.22</td>
600
+ <td>245</td>
601
+ <td>0.05</td>
602
+ <td>55</td>
603
+ </tr>
604
+ <tr>
605
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w8a8</th>
606
+ <td>1.76</td>
607
+ <td>5.89</td>
608
+ <td>6625</td>
609
+ <td>2.94</td>
610
+ <td>3307</td>
611
+ <td>3.36</td>
612
+ <td>3775</td>
613
+ <td>2.59</td>
614
+ <td>2916</td>
615
+ <td>0.74</td>
616
+ <td>828</td>
617
+ <td>0.53</td>
618
+ <td>601</td>
619
+ <td>0.35</td>
620
+ <td>398</td>
621
+ <td>0.11</td>
622
+ <td>120</td>
623
+ </tr>
624
+ <tr>
625
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16</th>
626
+ <td>1.48</td>
627
+ <td>4.91</td>
628
+ <td>5528</td>
629
+ <td>2.01</td>
630
+ <td>2259</td>
631
+ <td>2.03</td>
632
+ <td>2280</td>
633
+ <td>1.12</td>
634
+ <td>1255</td>
635
+ <td>1.11</td>
636
+ <td>1251</td>
637
+ <td>0.76</td>
638
+ <td>852</td>
639
+ <td>0.24</td>
640
+ <td>267</td>
641
+ <td>0.07</td>
642
+ <td>81</td>
643
+ </tr>
644
+ <tr>
645
+ <th rowspan="3" valign="top">A100x4</th>
646
+ <th>deepseek-ai/DeepSeek-R1-Distill-Llama-70B</th>
647
+ <td>---</td>
648
+ <td>10.41</td>
649
+ <td>5235</td>
650
+ <td>5.10</td>
651
+ <td>2565</td>
652
+ <td>5.50</td>
653
+ <td>2766</td>
654
+ <td>4.36</td>
655
+ <td>2193</td>
656
+ <td>1.49</td>
657
+ <td>751</td>
658
+ <td>1.21</td>
659
+ <td>607</td>
660
+ <td>0.89</td>
661
+ <td>447</td>
662
+ <td>0.19</td>
663
+ <td>98</td>
664
+ </tr>
665
+ <tr>
666
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w8a8</th>
667
+ <td>1.63</td>
668
+ <td>18.11</td>
669
+ <td>9103</td>
670
+ <td>8.90</td>
671
+ <td>4477</td>
672
+ <td>9.41</td>
673
+ <td>4730</td>
674
+ <td>7.42</td>
675
+ <td>3731</td>
676
+ <td>2.44</td>
677
+ <td>1229</td>
678
+ <td>1.89</td>
679
+ <td>948</td>
680
+ <td>1.26</td>
681
+ <td>631</td>
682
+ <td>0.30</td>
683
+ <td>149</td>
684
+ </tr>
685
+ <tr>
686
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16</th>
687
+ <td>1.12</td>
688
+ <td>12.63</td>
689
+ <td>6353</td>
690
+ <td>5.32</td>
691
+ <td>2673</td>
692
+ <td>5.58</td>
693
+ <td>2804</td>
694
+ <td>4.27</td>
695
+ <td>2144</td>
696
+ <td>2.30</td>
697
+ <td>1158</td>
698
+ <td>1.45</td>
699
+ <td>729</td>
700
+ <td>0.76</td>
701
+ <td>381</td>
702
+ <td>0.22</td>
703
+ <td>110</td>
704
+ </tr>
705
+ <tr>
706
+ <th rowspan="3" valign="top">H100x4</th>
707
+ <th>deepseek-ai/DeepSeek-R1-Distill-Llama-70B</th>
708
+ <td>---</td>
709
+ <td>14.04</td>
710
+ <td>2113</td>
711
+ <td>10.85</td>
712
+ <td>1634</td>
713
+ <td>12.25</td>
714
+ <td>1844</td>
715
+ <td>9.93</td>
716
+ <td>1494</td>
717
+ <td>3.68</td>
718
+ <td>554</td>
719
+ <td>2.82</td>
720
+ <td>425</td>
721
+ <td>1.81</td>
722
+ <td>273</td>
723
+ <td>0.35</td>
724
+ <td>52</td>
725
+ </tr>
726
+ <tr>
727
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-FP8-dynamic</th>
728
+ <td>1.78</td>
729
+ <td>41.44</td>
730
+ <td>6236</td>
731
+ <td>19.64</td>
732
+ <td>2956</td>
733
+ <td>21.03</td>
734
+ <td>3166</td>
735
+ <td>16.72</td>
736
+ <td>2516</td>
737
+ <td>6.01</td>
738
+ <td>904</td>
739
+ <td>4.46</td>
740
+ <td>672</td>
741
+ <td>2.55</td>
742
+ <td>383</td>
743
+ <td>0.49</td>
744
+ <td>74</td>
745
+ </tr>
746
+ <tr>
747
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-70B-quantized.w4a16</th>
748
+ <td>1.45</td>
749
+ <td>36.61</td>
750
+ <td>5509</td>
751
+ <td>15.12</td>
752
+ <td>2275</td>
753
+ <td>16.24</td>
754
+ <td>2443</td>
755
+ <td>13.22</td>
756
+ <td>1990</td>
757
+ <td>5.48</td>
758
+ <td>825</td>
759
+ <td>3.01</td>
760
+ <td>453</td>
761
+ <td>2.07</td>
762
+ <td>312</td>
763
+ <td>0.43</td>
764
+ <td>64</td>
765
  </tr>
766
  </tbody>
767
+ </table>
768
+
769
+ **Use case profiles: prompt tokens / generation tokens
770
+
771
+ **QPS: Queries per second.
772
+
773
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
774
+