Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,3 +1,68 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
base_model:
|
5 |
+
- mistralai/Devstral-Small-2507
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
tags:
|
8 |
+
- mistral
|
9 |
+
- neuralmagic
|
10 |
+
- redhat
|
11 |
+
- llmcompressor
|
12 |
+
- quantized
|
13 |
+
- FP8
|
14 |
+
- compressed-tensors
|
15 |
+
license: mit
|
16 |
+
license_name: mit
|
17 |
+
name: RedHatAI/Devstral-Small-2507
|
18 |
+
description: This model was obtained by quantizing weights and activations of Devstral-Small-2507 to FP8 data type.
|
19 |
+
readme: https://huggingface.co/RedHatAI/Devstral-Small-2507-FP8-Dynamic/main/README.md
|
20 |
+
tasks:
|
21 |
+
- text-to-text
|
22 |
+
provider: mistralai
|
23 |
+
---
|
24 |
+
|
25 |
+
# Devstral-Small-2507-FP8-Dynamic
|
26 |
+
|
27 |
+
## Model Overview
|
28 |
+
- **Model Architecture:** MistralForCausalLM
|
29 |
+
- **Input:** Text
|
30 |
+
- **Output:** Text
|
31 |
+
- **Model Optimizations:**
|
32 |
+
- **Activation quantization:** FP8
|
33 |
+
- **Weight quantization:** FP8
|
34 |
+
- **Release Date:** 08/28/2025
|
35 |
+
- **Version:** 1.0
|
36 |
+
- **Model Developers:** Red Hat (Neural Magic)
|
37 |
+
|
38 |
+
|
39 |
+
### Model Optimizations
|
40 |
+
|
41 |
+
This model was obtained by quantizing weights and activations of [Devstral-Small-2507](https://huggingface.co/mistralai/Devstral-Small-2507) to FP8 data type.
|
42 |
+
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%).
|
43 |
+
Weight quantization also reduces disk size requirements by approximately 50%.
|
44 |
+
|
45 |
+
|
46 |
+
## Deployment
|
47 |
+
|
48 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
49 |
+
|
50 |
+
```bash
|
51 |
+
vllm serve RedHatAI/Devstral-Small-2507-FP8-Dynamic --tensor-parallel-size 1 --tokenizer_mode mistral
|
52 |
+
```
|
53 |
+
|
54 |
+
## Evaluation
|
55 |
+
|
56 |
+
The model was evaluated on popular coding tasks (HumanEval, HumanEval+, MBPP, MBPP+) via [EvalPlus](https://github.com/evalplus/evalplus) and vllm backend (v0.10.1.1).
|
57 |
+
For evaluations, we run greedy sampling and report pass@1
|
58 |
+
|
59 |
+
|
60 |
+
### Accuracy
|
61 |
+
|
62 |
+
| | Recovery (%) | mistralai/Devstral-Small-2507 | RedHatAI/Devstral-Small-2507-FP8-Dynamic<br>(this model) |
|
63 |
+
| --------------------------- | :----------: | :------------------: | :--------------------------------------------------: |
|
64 |
+
| HumanEval | 98.50 | 89.0 | 89.6 |
|
65 |
+
| HumanEval+ | 99.88 | 81.1 | 82.9 |
|
66 |
+
| MBPP | 101.21 | 77.5 | 75.4 |
|
67 |
+
| MBPP+ | 101.21 | 66.1 | 64.8 |
|
68 |
+
| **Average Score** | **99.68** | **78.43** | **78.18** |
|