Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,436 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- fp4
|
4 |
+
- vllm
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- de
|
8 |
+
- fr
|
9 |
+
- it
|
10 |
+
- pt
|
11 |
+
- hi
|
12 |
+
- es
|
13 |
+
- th
|
14 |
+
pipeline_tag: text-generation
|
15 |
+
license: llama3.1
|
16 |
+
base_model: meta-llama/Llama-4-Scout-17B-16E-Instruct
|
17 |
+
---
|
18 |
+
|
19 |
+
# Llama-4-Scout-17B-16E-Instruct-NVFP4
|
20 |
+
|
21 |
+
## Model Overview
|
22 |
+
- **Model Architecture:** Meta-Llama-3.1
|
23 |
+
- **Input:** Text
|
24 |
+
- **Output:** Text
|
25 |
+
- **Model Optimizations:**
|
26 |
+
- **Weight quantization:** FP4
|
27 |
+
- **Activation quantization:** FP4
|
28 |
+
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
|
29 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
30 |
+
- **Release Date:** 7/15/25
|
31 |
+
- **Version:** 1.0
|
32 |
+
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
33 |
+
- **Model Developers:** RedHatAI
|
34 |
+
|
35 |
+
This model is a quantized version of [Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct).
|
36 |
+
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.
|
37 |
+
|
38 |
+
### Model Optimizations
|
39 |
+
|
40 |
+
This model was obtained by quantizing the weights and activations of [Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct) to FP4 data type, ready for inference with vLLM>=0.9.1
|
41 |
+
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
|
42 |
+
|
43 |
+
Only the weights of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor).
|
44 |
+
|
45 |
+
## Deployment
|
46 |
+
|
47 |
+
### Use with vLLM
|
48 |
+
|
49 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
50 |
+
|
51 |
+
```python
|
52 |
+
from vllm import LLM, SamplingParams
|
53 |
+
from transformers import AutoTokenizer
|
54 |
+
|
55 |
+
model_id = "RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4"
|
56 |
+
number_gpus = 2
|
57 |
+
|
58 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
|
59 |
+
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
61 |
+
|
62 |
+
messages = [
|
63 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
64 |
+
{"role": "user", "content": "Who are you?"},
|
65 |
+
]
|
66 |
+
|
67 |
+
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
68 |
+
|
69 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
|
70 |
+
|
71 |
+
outputs = llm.generate(prompts, sampling_params)
|
72 |
+
|
73 |
+
generated_text = outputs[0].outputs[0].text
|
74 |
+
print(generated_text)
|
75 |
+
```
|
76 |
+
|
77 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
78 |
+
|
79 |
+
## Creation
|
80 |
+
|
81 |
+
This model was created by applying [LLM Compressor with calibration samples from neuralmagic/calibration dataset](https://github.com/vllm-project/llm-compressor/blob/main/examples/multimodal_vision/llama4_example.py), as presented in the code snipet below.
|
82 |
+
|
83 |
+
```python
|
84 |
+
import torch
|
85 |
+
from datasets import load_dataset
|
86 |
+
from transformers import Llama4ForConditionalGeneration, Llama4Processor
|
87 |
+
|
88 |
+
from llmcompressor import oneshot
|
89 |
+
from llmcompressor.modeling import prepare_for_calibration
|
90 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
91 |
+
|
92 |
+
# Select model and load it.
|
93 |
+
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
|
94 |
+
model = Llama4ForConditionalGeneration.from_pretrained(model_id, torch_dtype="auto")
|
95 |
+
processor = Llama4Processor.from_pretrained(model_id)
|
96 |
+
# We update `Llama4TextMoe` modules with custom `SequentialLlama4TextMoe`.
|
97 |
+
# This change allows compatibility with vllm.
|
98 |
+
# To apply your own custom module for experimentation, consider updating
|
99 |
+
# `SequentialLlama4TextMoe` under llmcompressor/modeling/llama4.py
|
100 |
+
model = prepare_for_calibration(model)
|
101 |
+
|
102 |
+
DATASET_ID = "neuralmagic/calibration"
|
103 |
+
NUM_CALIBRATION_SAMPLES = 512
|
104 |
+
MAX_SEQUENCE_LENGTH = 8192
|
105 |
+
|
106 |
+
ds = load_dataset(DATASET_ID, name="LLM", split=f"train[:{NUM_CALIBRATION_SAMPLES}]")
|
107 |
+
|
108 |
+
|
109 |
+
def preprocess_function(example):
|
110 |
+
messgages = []
|
111 |
+
for message in example["messages"]:
|
112 |
+
messgages.append(
|
113 |
+
{
|
114 |
+
"role": message["role"],
|
115 |
+
"content": [{"type": "text", "text": message["content"]}],
|
116 |
+
}
|
117 |
+
)
|
118 |
+
|
119 |
+
return processor.apply_chat_template(
|
120 |
+
messgages,
|
121 |
+
return_tensors="pt",
|
122 |
+
padding=False,
|
123 |
+
truncation=True,
|
124 |
+
max_length=MAX_SEQUENCE_LENGTH,
|
125 |
+
tokenize=True,
|
126 |
+
add_special_tokens=False,
|
127 |
+
return_dict=True,
|
128 |
+
add_generation_prompt=False,
|
129 |
+
)
|
130 |
+
|
131 |
+
|
132 |
+
ds = ds.map(preprocess_function, batched=False, remove_columns=ds.column_names)
|
133 |
+
|
134 |
+
|
135 |
+
def data_collator(batch):
|
136 |
+
assert len(batch) == 1
|
137 |
+
return {
|
138 |
+
key: torch.tensor(value)
|
139 |
+
if key != "pixel_values"
|
140 |
+
else torch.tensor(value, dtype=torch.bfloat16).squeeze(0)
|
141 |
+
for key, value in batch[0].items()
|
142 |
+
}
|
143 |
+
|
144 |
+
|
145 |
+
# Configure the quantization algorithm to run.
|
146 |
+
recipe = GPTQModifier(
|
147 |
+
targets="Linear",
|
148 |
+
scheme="W4A16",
|
149 |
+
ignore=[
|
150 |
+
"re:.*lm_head",
|
151 |
+
"re:.*self_attn",
|
152 |
+
"re:.*router",
|
153 |
+
"re:vision_model.*",
|
154 |
+
"re:multi_modal_projector.*",
|
155 |
+
"Llama4TextAttention",
|
156 |
+
],
|
157 |
+
)
|
158 |
+
|
159 |
+
# Apply algorithms.
|
160 |
+
# due to the large size of Llama4, we specify sequential targets such that
|
161 |
+
# only one MLP is loaded into GPU memory at a time
|
162 |
+
oneshot(
|
163 |
+
model=model,
|
164 |
+
dataset=ds,
|
165 |
+
recipe=recipe,
|
166 |
+
max_seq_length=MAX_SEQUENCE_LENGTH,
|
167 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
168 |
+
data_collator=data_collator,
|
169 |
+
sequential_targets=["Llama4TextMLP"],
|
170 |
+
)
|
171 |
+
|
172 |
+
# Save to disk compressed.
|
173 |
+
SAVE_DIR = model_id.rstrip("/").split("/")[-1] + "-W4A16-G128"
|
174 |
+
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
175 |
+
processor.save_pretrained(SAVE_DIR)
|
176 |
+
|
177 |
+
```
|
178 |
+
|
179 |
+
## Evaluation
|
180 |
+
|
181 |
+
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval_64 benchmarks. All evaluations were conducted using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness).
|
182 |
+
<table>
|
183 |
+
<thead>
|
184 |
+
<tr>
|
185 |
+
<th>Category</th>
|
186 |
+
<th>Metric</th>
|
187 |
+
<th>Llama-4-Scout-17B-16E-Instruct (A100)</th>
|
188 |
+
<th>Llama-4-Scout-17B-16E-Instruct-NVFP4 (B200)</th>
|
189 |
+
<th>Recovery (%)</th>
|
190 |
+
</tr>
|
191 |
+
</thead>
|
192 |
+
<tbody>
|
193 |
+
<tr>
|
194 |
+
<td rowspan="8"><b>OpenLLM V1</b></td>
|
195 |
+
<td>ARC Challenge (LLaMA)</td>
|
196 |
+
<td>93.39</td>
|
197 |
+
<td>92.10</td>
|
198 |
+
<td>98.62%</td>
|
199 |
+
</tr>
|
200 |
+
<tr>
|
201 |
+
<td>GSM8K (LLaMA)</td>
|
202 |
+
<td>92.87</td>
|
203 |
+
<td>94.31</td>
|
204 |
+
<td>101.55%</td>
|
205 |
+
</tr>
|
206 |
+
<tr>
|
207 |
+
<td>MMLU (LLaMA)</td>
|
208 |
+
<td>81.01</td>
|
209 |
+
<td>79.37</td>
|
210 |
+
<td>97.98%</td>
|
211 |
+
</tr>
|
212 |
+
<tr>
|
213 |
+
<td>MMLU-CoT (LLaMA)</td>
|
214 |
+
<td>85.99</td>
|
215 |
+
<td>84.58</td>
|
216 |
+
<td>98.36%</td>
|
217 |
+
</tr>
|
218 |
+
<tr>
|
219 |
+
<td>Hellaswag</td>
|
220 |
+
<td>79.13</td>
|
221 |
+
<td>78.47</td>
|
222 |
+
<td>99.17%</td>
|
223 |
+
</tr>
|
224 |
+
<tr>
|
225 |
+
<td>TruthfulQA-mc2</td>
|
226 |
+
<td>62.53</td>
|
227 |
+
<td>60.83</td>
|
228 |
+
<td>97.28%</td>
|
229 |
+
</tr>
|
230 |
+
<tr>
|
231 |
+
<td>Winogrande</td>
|
232 |
+
<td>73.56</td>
|
233 |
+
<td>73.01</td>
|
234 |
+
<td>99.25%</td>
|
235 |
+
</tr>
|
236 |
+
<tr>
|
237 |
+
<td><b>Average</b></td>
|
238 |
+
<td><b>81.21</b></td>
|
239 |
+
<td><b>80.38</b></td>
|
240 |
+
<td><b>98.89%</b></td>
|
241 |
+
</tr>
|
242 |
+
<tr>
|
243 |
+
<td rowspan="7"><b>OpenLLM V2</b></td>
|
244 |
+
<td>MMLU-Pro</td>
|
245 |
+
<td>55.64</td>
|
246 |
+
<td>53.84</td>
|
247 |
+
<td>96.76%</td>
|
248 |
+
</tr>
|
249 |
+
<tr>
|
250 |
+
<td>IFEval</td>
|
251 |
+
<td>89.09</td>
|
252 |
+
<td>89.93</td>
|
253 |
+
<td>100.94%</td>
|
254 |
+
</tr>
|
255 |
+
<tr>
|
256 |
+
<td>BBH</td>
|
257 |
+
<td>65.14</td>
|
258 |
+
<td>64.00</td>
|
259 |
+
<td>98.25%</td>
|
260 |
+
</tr>
|
261 |
+
<tr>
|
262 |
+
<td>Math-Hard</td>
|
263 |
+
<td>52.64</td>
|
264 |
+
<td>56.12</td>
|
265 |
+
<td>106.61%</td>
|
266 |
+
</tr>
|
267 |
+
<tr>
|
268 |
+
<td>GPQA</td>
|
269 |
+
<td>32.21</td>
|
270 |
+
<td>31.88</td>
|
271 |
+
<td>98.98%</td>
|
272 |
+
</tr>
|
273 |
+
<tr>
|
274 |
+
<td>MuSR</td>
|
275 |
+
<td>42.20</td>
|
276 |
+
<td>42.99</td>
|
277 |
+
<td>101.87%</td>
|
278 |
+
</tr>
|
279 |
+
<tr>
|
280 |
+
<td><b>Average</b></td>
|
281 |
+
<td><b>56.15</b></td>
|
282 |
+
<td><b>56.46</b></td>
|
283 |
+
<td><b>100.55%</b></td>
|
284 |
+
</tr>
|
285 |
+
<tr>
|
286 |
+
<td><b>Coding</b></td>
|
287 |
+
<td>HumanEval Instruct pass@1</td>
|
288 |
+
<td>81.71</td>
|
289 |
+
<td>76.22</td>
|
290 |
+
<td>93.29%</td>
|
291 |
+
</tr>
|
292 |
+
<tr>
|
293 |
+
<td rowspan="5"></td>
|
294 |
+
<td>HumanEval 64 Instruct pass@2</td>
|
295 |
+
<td>83.49</td>
|
296 |
+
<td>81.10</td>
|
297 |
+
<td>97.14%</td>
|
298 |
+
</tr>
|
299 |
+
<tr>
|
300 |
+
<td>HumanEval 64 Instruct pass@8</td>
|
301 |
+
<td>87.71</td>
|
302 |
+
<td>88.66</td>
|
303 |
+
<td>101.08%</td>
|
304 |
+
</tr>
|
305 |
+
<tr>
|
306 |
+
<td>HumanEval 64 Instruct pass@16</td>
|
307 |
+
<td>88.71</td>
|
308 |
+
<td>90.11</td>
|
309 |
+
<td>101.58%</td>
|
310 |
+
</tr>
|
311 |
+
<tr>
|
312 |
+
<td>HumanEval 64 Instruct pass@32</td>
|
313 |
+
<td>89.38</td>
|
314 |
+
<td>90.91</td>
|
315 |
+
<td>101.71%</td>
|
316 |
+
</tr>
|
317 |
+
<tr>
|
318 |
+
<td>HumanEval 64 Instruct pass@64</td>
|
319 |
+
<td>89.63</td>
|
320 |
+
<td>91.46</td>
|
321 |
+
<td>102.04%</td>
|
322 |
+
</tr>
|
323 |
+
</tbody>
|
324 |
+
</table>
|
325 |
+
|
326 |
+
|
327 |
+
### Reproduction
|
328 |
+
|
329 |
+
The results were obtained using the following commands:
|
330 |
+
|
331 |
+
#### MMLU_LLAMA
|
332 |
+
```
|
333 |
+
lm_eval \
|
334 |
+
--model vllm \
|
335 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
336 |
+
--tasks mmlu_llama \
|
337 |
+
--apply_chat_template \
|
338 |
+
--fewshot_as_multiturn \
|
339 |
+
--batch_size auto
|
340 |
+
```
|
341 |
+
|
342 |
+
#### MMLU_COT_LLAMA
|
343 |
+
```
|
344 |
+
lm_eval \
|
345 |
+
--model vllm \
|
346 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
347 |
+
--tasks mmlu_cot_llama \
|
348 |
+
--apply_chat_template \
|
349 |
+
--fewshot_as_multiturn \
|
350 |
+
--batch_size auto
|
351 |
+
```
|
352 |
+
|
353 |
+
#### ARC-Challenge
|
354 |
+
```
|
355 |
+
lm_eval \
|
356 |
+
--model vllm \
|
357 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
358 |
+
--tasks arc_challenge_llama \
|
359 |
+
--apply_chat_template \
|
360 |
+
--batch_size auto
|
361 |
+
```
|
362 |
+
|
363 |
+
#### GSM-8K
|
364 |
+
```
|
365 |
+
lm_eval \
|
366 |
+
--model vllm \
|
367 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
368 |
+
--tasks gsm8k_llama \
|
369 |
+
--apply_chat_template \
|
370 |
+
--fewshot_as_multiturn \
|
371 |
+
--batch_size auto
|
372 |
+
```
|
373 |
+
|
374 |
+
#### Hellaswag
|
375 |
+
```
|
376 |
+
lm_eval \
|
377 |
+
--model vllm \
|
378 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
379 |
+
--tasks hellaswag \
|
380 |
+
--apply_chat_template \
|
381 |
+
--fewshot_as_multiturn \
|
382 |
+
--batch_size auto
|
383 |
+
```
|
384 |
+
|
385 |
+
#### Winogrande
|
386 |
+
```
|
387 |
+
lm_eval \
|
388 |
+
--model vllm \
|
389 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
390 |
+
--tasks winogrande \
|
391 |
+
--apply_chat_template \
|
392 |
+
--fewshot_as_multiturn \
|
393 |
+
--batch_size auto
|
394 |
+
```
|
395 |
+
|
396 |
+
#### TruthfulQA
|
397 |
+
```
|
398 |
+
lm_eval \
|
399 |
+
--model vllm \
|
400 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
401 |
+
--tasks truthfulqa \
|
402 |
+
--apply_chat_template \
|
403 |
+
--fewshot_as_multiturn \
|
404 |
+
--batch_size auto
|
405 |
+
```
|
406 |
+
|
407 |
+
#### OpenLLM v2
|
408 |
+
```
|
409 |
+
lm_eval \
|
410 |
+
--model vllm \
|
411 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
|
412 |
+
--apply_chat_template \
|
413 |
+
--fewshot_as_multiturn \
|
414 |
+
--tasks leaderboard \
|
415 |
+
--batch_size auto
|
416 |
+
```
|
417 |
+
|
418 |
+
#### HumanEval and HumanEval_64
|
419 |
+
```
|
420 |
+
lm_eval \
|
421 |
+
--model vllm \
|
422 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
|
423 |
+
--apply_chat_template \
|
424 |
+
--fewshot_as_multiturn \
|
425 |
+
--tasks humaneval_instruct \
|
426 |
+
--batch_size auto
|
427 |
+
|
428 |
+
|
429 |
+
lm_eval \
|
430 |
+
--model vllm \
|
431 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
|
432 |
+
--apply_chat_template \
|
433 |
+
--fewshot_as_multiturn \
|
434 |
+
--tasks humaneval_64_instruct \
|
435 |
+
--batch_size auto
|
436 |
+
```
|