Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: vllm
|
3 |
+
language:
|
4 |
+
- ar
|
5 |
+
- de
|
6 |
+
- en
|
7 |
+
- es
|
8 |
+
- fr
|
9 |
+
- hi
|
10 |
+
- id
|
11 |
+
- it
|
12 |
+
- pt
|
13 |
+
- th
|
14 |
+
- tl
|
15 |
+
- vi
|
16 |
+
base_model:
|
17 |
+
- meta-llama/Llama-4-Scout-17B-16E-Instruct
|
18 |
+
pipeline_tag: image-text-to-text
|
19 |
+
tags:
|
20 |
+
- facebook
|
21 |
+
- meta
|
22 |
+
- pytorch
|
23 |
+
- llama
|
24 |
+
- llama4
|
25 |
+
- neuralmagic
|
26 |
+
- redhat
|
27 |
+
- llmcompressor
|
28 |
+
- quantized
|
29 |
+
- W4A16
|
30 |
+
- INT4
|
31 |
+
license: other
|
32 |
+
license_name: llama4
|
33 |
+
---
|
34 |
+
|
35 |
+
# Llama-4-Scout-17B-16E-Instruct-quantized.w4a16
|
36 |
+
|
37 |
+
## Model Overview
|
38 |
+
- **Model Architecture:** Llama4ForConditionalGeneration
|
39 |
+
- **Input:** Text / Image
|
40 |
+
- **Output:** Text
|
41 |
+
- **Model Optimizations:**
|
42 |
+
- **Activation quantization:** None
|
43 |
+
- **Weight quantization:** INT4
|
44 |
+
- **Release Date:** 04/25/2025
|
45 |
+
- **Version:** 1.0
|
46 |
+
- **Model Developers:** Red Hat (Neural Magic)
|
47 |
+
|
48 |
+
|
49 |
+
### Model Optimizations
|
50 |
+
|
51 |
+
This model was obtained by quantizing weights of [Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct) to INT4 data type.
|
52 |
+
This optimization reduces the number of bits used to represent weights from 16 to 4, reducing GPU memory requirements by approximately 75%.
|
53 |
+
Weight quantization also reduces disk size requirements by approximately 75%. The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization.
|
54 |
+
|
55 |
+
|
56 |
+
## Deployment
|
57 |
+
|
58 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
59 |
+
|
60 |
+
```python
|
61 |
+
from vllm import LLM, SamplingParams
|
62 |
+
from transformers import AutoTokenizer
|
63 |
+
|
64 |
+
model_id = "RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16"
|
65 |
+
number_gpus = 4
|
66 |
+
|
67 |
+
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
|
68 |
+
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
70 |
+
|
71 |
+
prompt = "Give me a short introduction to large language model."
|
72 |
+
|
73 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
|
74 |
+
|
75 |
+
outputs = llm.generate(prompt, sampling_params)
|
76 |
+
|
77 |
+
generated_text = outputs[0].outputs[0].text
|
78 |
+
print(generated_text)
|
79 |
+
```
|
80 |
+
|
81 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
82 |
+
|
83 |
+
|
84 |
+
## Evaluation
|
85 |
+
|
86 |
+
The model was evaluated on the OpenLLM leaderboard tasks (v1 and v2), long context RULER, multimodal MMMU, and multimodal ChartQA.
|
87 |
+
All evaluations are obtained through [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
|
88 |
+
|
89 |
+
<details>
|
90 |
+
<summary>Evaluation details</summary>
|
91 |
+
|
92 |
+
**OpenLLM v1**
|
93 |
+
```
|
94 |
+
lm_eval \
|
95 |
+
--model vllm \
|
96 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8,gpu_memory_utilization=0.7,enable_chunked_prefill=True,trust_remote_code=True \
|
97 |
+
--tasks openllm \
|
98 |
+
--batch_size auto
|
99 |
+
```
|
100 |
+
|
101 |
+
**OpenLLM v2**
|
102 |
+
```
|
103 |
+
lm_eval \
|
104 |
+
--model vllm \
|
105 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=8,gpu_memory_utilization=0.5,enable_chunked_prefill=True,trust_remote_code=True \
|
106 |
+
--tasks leaderboard \
|
107 |
+
--apply_chat_template \
|
108 |
+
--fewshot_as_multiturn \
|
109 |
+
--batch_size auto
|
110 |
+
```
|
111 |
+
|
112 |
+
**Long Context RULER**
|
113 |
+
```
|
114 |
+
lm_eval \
|
115 |
+
--model vllm \
|
116 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=524288,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
|
117 |
+
--tasks ruler \
|
118 |
+
--metadata='{"max_seq_lengths":[131072]}' \
|
119 |
+
--batch_size auto
|
120 |
+
```
|
121 |
+
|
122 |
+
**Multimodal MMMU**
|
123 |
+
```
|
124 |
+
lm_eval \
|
125 |
+
--model vllm-vlm \
|
126 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
|
127 |
+
--tasks mmmu_val \
|
128 |
+
--apply_chat_template \
|
129 |
+
--batch_size auto
|
130 |
+
```
|
131 |
+
|
132 |
+
**Multimodal ChartQA**
|
133 |
+
```
|
134 |
+
export VLLM_MM_INPUT_CACHE_GIB=8
|
135 |
+
lm_eval \
|
136 |
+
--model vllm-vlm \
|
137 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
|
138 |
+
--tasks chartqa \
|
139 |
+
--apply_chat_template \
|
140 |
+
--batch_size auto
|
141 |
+
```
|
142 |
+
|
143 |
+
</details>
|
144 |
+
|
145 |
+
### Accuracy
|
146 |
+
|
147 |
+
| | Recovery (%) | meta-llama/Llama-4-Scout-17B-16E-Instruct | RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16<br>(this model) |
|
148 |
+
| ---------------------------------------------- | :-----------: | :---------------------------------------: | :-----------------------------------------------------------------: |
|
149 |
+
| ARC-Challenge<br>25-shot | ? | 69.37 | ? |
|
150 |
+
| GSM8k<br>5-shot | ? | 90.45 | ? |
|
151 |
+
| HellaSwag<br>10-shot | ? | 85.23 | ? |
|
152 |
+
| MMLU<br>5-shot | ? | 80.54 | ? |
|
153 |
+
| TruthfulQA<br>0-shot | ? | 61.41 | ? |
|
154 |
+
| WinoGrande<br>5-shot | ? | 77.90 | ? |
|
155 |
+
| **OpenLLM v1<br>Average Score** | **?** | **77.48** | **?** |
|
156 |
+
| IFEval<br>0-shot<br>avg of inst and prompt acc | ? | 86.90 | ? |
|
157 |
+
| Big Bench Hard<br>3-shot | ? | 65.13 | ? |
|
158 |
+
| Math Lvl 5<br>4-shot | ? | 57.78 | ? |
|
159 |
+
| GPQA<br>0-shot | ? | 31.88 | ? |
|
160 |
+
| MuSR<br>0-shot | ? | 42.20 | ? |
|
161 |
+
| MMLU-Pro<br>5-shot | ? | 55.70 | ? |
|
162 |
+
| **OpenLLM v2<br>Average Score** | **?** | **56.60** | **?** |
|
163 |
+
| RULER<br>seqlen = 131072<br>niah_multikey_1 | ? | 88.20 | ? |
|
164 |
+
| RULER<br>seqlen = 131072<br>niah_multikey_2 | ? | 83.60 | ? |
|
165 |
+
| RULER<br>seqlen = 131072<br>niah_multikey_3 | ? | 78.80 | ? |
|
166 |
+
| RULER<br>seqlen = 131072<br>niah_multiquery | ? | 95.40 | ? |
|
167 |
+
| RULER<br>seqlen = 131072<br>niah_multivalue | ? | 73.75 | ? |
|
168 |
+
| RULER<br>seqlen = 131072<br>niah_single_1 | ? | 100.00 | ? |
|
169 |
+
| RULER<br>seqlen = 131072<br>niah_single_2 | ? | 99.80 | ? |
|
170 |
+
| RULER<br>seqlen = 131072<br>niah_single_3 | ? | 99.80 | ? |
|
171 |
+
| RULER<br>seqlen = 131072<br>ruler_cwe | ? | 39.42 | ? |
|
172 |
+
| RULER<br>seqlen = 131072<br>ruler_fwe | ? | 92.93 | ? |
|
173 |
+
| RULER<br>seqlen = 131072<br>ruler_qa_hotpot | ? | 48.20 | ? |
|
174 |
+
| RULER<br>seqlen = 131072<br>ruler_qa_squad | ? | 53.57 | ? |
|
175 |
+
| RULER<br>seqlen = 131072<br>ruler_qa_vt | ? | 92.28 | ? |
|
176 |
+
| **RULER<br>seqlen = 131072<br>Average Score** | **?** | **80.44** | **?** |
|
177 |
+
| MMMU<br>0-shot | ? | 53.44 | ? |
|
178 |
+
| ChartQA<br>0-shot<br>exact_match | ? | 65.88 | ? |
|
179 |
+
| ChartQA<br>0-shot<br>relaxed_accuracy | ? | 88.92 | ? |
|
180 |
+
| **Multimodal Average Score** | **?** | **69.41** | **?** |
|