alexmarques commited on
Commit
5048a55
·
verified ·
1 Parent(s): 79ae16d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +222 -0
README.md ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - de
5
+ - fr
6
+ - it
7
+ - pt
8
+ - hi
9
+ - es
10
+ - th
11
+ pipeline_tag: text-generation
12
+ license: llama3.1
13
+ ---
14
+
15
+ # Meta-Llama-3.1-70B-Instruct-quantized.w8a8
16
+
17
+ ## Model Overview
18
+ - **Model Architecture:** Meta-Llama-3
19
+ - **Input:** Text
20
+ - **Output:** Text
21
+ - **Model Optimizations:**
22
+ - **Activation quantization:** INT8
23
+ - **Weight quantization:** INT8
24
+ - **Intended Use Cases:** Intended for commercial and research use multiple languages. Similarly to [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct), this models is intended for assistant-like chat.
25
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
26
+ - **Release Date:** 7/29/2024
27
+ - **Version:** 1.0
28
+ - **License(s):** [Llama3.1]
29
+ - **Model Developers:** Neural Magic
30
+
31
+ Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
32
+ It achieves scores within 3% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande and TruthfulQA.
33
+
34
+ ### Model Optimizations
35
+
36
+ This model was obtained by quantizing the weights of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) to INT8 data type.
37
+ This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
38
+ Weight quantization also reduces disk size requirements by approximately 50%.
39
+
40
+ Only weights and activations of the linear operators within transformers blocks are quantized.
41
+ Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension.
42
+ Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations.
43
+ The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
44
+ GPTQ used a 1% damping factor and 256 sequences of 8,192 random tokens.
45
+
46
+
47
+ ## Deployment
48
+
49
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
50
+
51
+ ```python
52
+ from vllm import LLM, SamplingParams
53
+ from transformers import AutoTokenizer
54
+
55
+ model_id = "neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a8"
56
+ number_gpus = 2
57
+ max_model_len = 8192
58
+
59
+ sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
60
+
61
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
62
+
63
+ messages = [
64
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
65
+ {"role": "user", "content": "Who are you?"},
66
+ ]
67
+
68
+ prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
69
+
70
+ llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)
71
+
72
+ outputs = llm.generate(prompts, sampling_params)
73
+
74
+ generated_text = outputs[0].outputs[0].text
75
+ print(generated_text)
76
+ ```
77
+
78
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
79
+
80
+
81
+ ## Creation
82
+
83
+ This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.
84
+
85
+ ```python
86
+ from transformers import AutoTokenizer
87
+ from datasets import Dataset
88
+ from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
89
+ from llmcompressor.modifiers.quantization import GPTQModifier
90
+ import random
91
+
92
+ model_id = "meta-llama/Meta-Llama-3.1-70B-Instruct"
93
+
94
+ num_samples = 256
95
+ max_seq_len = 8192
96
+
97
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
98
+
99
+ def preprocess_fn(example):
100
+ return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
101
+
102
+ ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
103
+ ds = ds.shuffle().select(range(num_samples))
104
+ ds = ds.map(preprocess_fn)
105
+
106
+ examples = [tokenizer(example["text"], padding=False, max_length=max_seq_len, truncation=True) for example in ds]
107
+
108
+ recipe = GPTQModifier(
109
+ targets="Linear",
110
+ scheme="W8A8",
111
+ ignore=["lm_head"],
112
+ dampening_frac=0.1,
113
+ )
114
+
115
+ model = SparseAutoModelForCausalLM.from_pretrained(
116
+ model_id,
117
+ device_map="auto",
118
+ )
119
+
120
+ oneshot(
121
+ model=model,
122
+ dataset=ds,
123
+ recipe=recipe,
124
+ max_seq_length=max_seq_len,
125
+ num_calibration_samples=num_samples,
126
+ )
127
+
128
+ model.save_pretrained("Meta-Llama-3.1-70B-Instruct-quantized.w8a8")
129
+ ```
130
+
131
+
132
+ ## Evaluation
133
+
134
+ The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
135
+ Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
136
+ This version of the lm-evaluation-harness includes versions of ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals).
137
+
138
+ ### Accuracy
139
+
140
+ #### Open LLM Leaderboard evaluation scores
141
+ <table>
142
+ <tr>
143
+ <td><strong>Benchmark</strong>
144
+ </td>
145
+ <td><strong>Meta-Llama-3.1-70B-Instruct </strong>
146
+ </td>
147
+ <td><strong>Meta-Llama-3.1-70B-Instruct-quantized.w8a8 (this model)</strong>
148
+ </td>
149
+ <td><strong>Recovery</strong>
150
+ </td>
151
+ </tr>
152
+ <tr>
153
+ <td>MMLU (5-shot)
154
+ </td>
155
+ <td>82.21
156
+ </td>
157
+ <td>79.91
158
+ </td>
159
+ <td>97.2%
160
+ </td>
161
+ </tr>
162
+ <tr>
163
+ <td>ARC Challenge (0-shot)
164
+ </td>
165
+ <td>95.05
166
+ </td>
167
+ <td>93.09
168
+ </td>
169
+ <td>97.9%
170
+ </td>
171
+ </tr>
172
+ <tr>
173
+ <td>GSM-8K (CoT, 8-shot, strict-match)
174
+ </td>
175
+ <td>93.10
176
+ </td>
177
+ <td>93.18
178
+ </td>
179
+ <td>100.1%
180
+ </td>
181
+ </tr>
182
+ <tr>
183
+ <td>Hellaswag (10-shot)
184
+ </td>
185
+ <td>86.40
186
+ </td>
187
+ <td>85.46
188
+ </td>
189
+ <td>98.9%
190
+ </td>
191
+ </tr>
192
+ <tr>
193
+ <td>Winogrande (5-shot)
194
+ </td>
195
+ <td>85.00
196
+ </td>
197
+ <td>85.24
198
+ </td>
199
+ <td>100.3%
200
+ </td>
201
+ </tr>
202
+ <tr>
203
+ <td>TruthfulQA (0-shot)
204
+ </td>
205
+ <td>59.83
206
+ </td>
207
+ <td>58.55
208
+ </td>
209
+ <td>97.9%
210
+ </td>
211
+ </tr>
212
+ <tr>
213
+ <td><strong>Average</strong>
214
+ </td>
215
+ <td><strong>83.60</strong>
216
+ </td>
217
+ <td><strong>82.57</strong>
218
+ </td>
219
+ <td><strong>98.8%</strong>
220
+ </td>
221
+ </tr>
222
+ </table>