--- library_name: transformers license: apache-2.0 pipeline_tag: text-generation base_model: - Qwen/Qwen3-0.6B tags: - neuralmagic - redhat - llmcompressor - quantized - INT4 --- # Qwen3-0.6B-quantized.w4a16 ## Model Overview - **Model Architecture:** Qwen3ForCausalLM - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Intended Use Cases:** - Reasoning. - Function calling. - Subject matter experts via fine-tuning. - Multilingual instruction following. - Translation. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). - **Release Date:** 05/05/2025 - **Version:** 1.0 - **Model Developers:** RedHat (Neural Magic) ### Model Optimizations This model was obtained by quantizing the weights of [Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) to INT4 data type. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. Only the weights of the linear operators within transformers blocks are quantized. Weights are quantized using a asymmetric per-group scheme, with group size 64. The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. ## Deployment This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "RedHatAI/Qwen3-0.6B-quantized.w4a16" number_gpus = 1 sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256) messages = [ {"role": "user", "content": prompt} ] tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [{"role": "user", "content": "Give me a short introduction to large language model."}] prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) llm = LLM(model=model_id, tensor_parallel_size=number_gpus) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation
Creation details This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. ```python from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers import oneshot from transformers import AutoModelForCausalLM, AutoTokenizer # Load model model_stub = "Qwen/Qwen3-0.6B" model_name = model_stub.split("/")[-1] num_samples = 1024 max_seq_len = 8192 model = AutoModelForCausalLM.from_pretrained(model_stub) tokenizer = AutoTokenizer.from_pretrained(model_stub) def preprocess_fn(example): return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") ds = ds.map(preprocess_fn) # Configure the quantization algorithm and scheme recipe = GPTQModifier( ignore=["lm_head"], sequential_targets=["Qwen3DecoderLayer"], targets="Linear", dampening_frac=0.01, config_groups={ "group0": { "targets": ["Linear"] "weights": { "num_bits": 4, "type": "int", "strategy": "group", "group_size": 64, "symmetric": False, "actorder": "weight", "observer": "mse", } } } ) # Apply quantization oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, ) # Save to disk in compressed-tensors format save_path = model_name + "-quantized.w4a16" model.save_pretrained(save_path) tokenizer.save_pretrained(save_path) print(f"Model and tokenizer saved to: {save_path}") ```
## Evaluation The model was evaluated on the OpenLLM leaderboard tasks (versions 1 and 2), using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), and on reasoning tasks using [lighteval](https://github.com/neuralmagic/lighteval/tree/reasoning). [vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations.
Evaluation details **lm-evaluation-harness** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Qwen3-0.6B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \ --tasks openllm \ --apply_chat_template\ --fewshot_as_multiturn \ --batch_size auto ``` ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Qwen3-0.6B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \ --tasks mgsm \ --apply_chat_template\ --batch_size auto ``` ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Qwen3-0.6B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=1 \ --tasks leaderboard \ --apply_chat_template\ --fewshot_as_multiturn \ --batch_size auto ``` **lighteval** lighteval_model_arguments.yaml ```yaml model_parameters: model_name: RedHatAI/Qwen3-0.6B-quantized.w4a16 dtype: auto gpu_memory_utilization: 0.9 max_model_length: 40960 generation_parameters: temperature: 0.6 top_k: 20 min_p: 0.0 top_p: 0.95 max_new_tokens: 32768 ``` ``` lighteval vllm \ --model_args lighteval_model_arguments.yaml \ --tasks lighteval|aime24|0|0 \ --use_chat_template = true ``` ``` lighteval vllm \ --model_args lighteval_model_arguments.yaml \ --tasks lighteval|aime25|0|0 \ --use_chat_template = true ``` ``` lighteval vllm \ --model_args lighteval_model_arguments.yaml \ --tasks lighteval|math_500|0|0 \ --use_chat_template = true ``` ``` lighteval vllm \ --model_args lighteval_model_arguments.yaml \ --tasks lighteval|gpqa:diamond|0|0 \ --use_chat_template = true ``` ``` lighteval vllm \ --model_args lighteval_model_arguments.yaml \ --tasks extended|lcb:codegeneration \ --use_chat_template = true ```
### Accuracy
Category Benchmark Qwen3-0.6B Qwen3-0.6B-quantized.w4a16
(this model)
Recovery
OpenLLM v1 MMLU (5-shot) 42.82 39.80 93.00%
ARC Challenge (25-shot) 32.85 30.72 93.5%
GSM-8K (5-shot, strict-match) 1.82 2.20 ---
Hellaswag (10-shot) 43.04 41.02 95.3%
Winogrande (5-shot) 54.54 54.62 100.1%
TruthfulQA (0-shot, mc2) 51.61 48.77 94.5%
Average 37.78 36.19 95.8%
OpenLLM v2 MMLU-Pro (5-shot) 17.25 14.27 ---
IFEval (0-shot) 62.83 55.81 88.8%
BBH (3-shot) 4.23 1.63 ---
Math-lvl-5 (4-shot) 18.26 10.26 ---
GPQA (0-shot) 0.00 0.00 ---
MuSR (0-shot) 0.00 0.00 ---
Average 17.10 13.66 ---
Multilingual MGSM (0-shot) 19.70 19.90 ---
Reasoning
(generation)
AIME 2024 9.69 3.44 ---
AIME 2025 13.13 6.98 ---
GPQA diamond 29.29 27.78 94.8%
Math-lvl-5 71.60 70.60 98.6%
LiveCodeBench 12.83 8.35 ---