File size: 6,550 Bytes
c28c229 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
tags:
- vllm
- sparsity
pipeline_tag: text-generation
license: llama3.1
base_model: meta-llama/Llama-3.1-8B
---
# Get Started
Sparse-Llama-3.1 models use 2:4 semi-structured sparsity to deliver 2x model size and compute reduction.
Explore the [launch blog](https://neuralmagic.com/blog/24-sparse-llama-smaller-models-for-efficient-gpu-inference/) to learn more about Sparse-Llama-3.1 and its potential for efficient, scalable AI deployments.
You can also find all available models in our [Neural Magic HuggingFace collection](https://huggingface.co/collections/neuralmagic/sparse-llama-31-2of4-673f6e96ae74efa213cf1cff).
**Looking to build on top of sparse models?** Whether you aim to reduce deployment costs, improve inference performance, or create highly optimized versions for your enterprise needs, Sparse Llama provides the ideal foundation. These models offer state-of-the-art efficiency with 2:4 structured sparsity, enabling cost-effective scaling without sacrificing accuracy.
[Connect with us](https://neuralmagic.com/book-a-demo/) to explore how we can help integrate sparsity into your AI workflows.
# Sparse-Llama-3.1-8B-2of4
## Model Overview
- **Model Architecture:** Llama-3.1-8B
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Sparsity:** 2:4
- **Release Date:** 11/20/2024
- **Version:** 1.0
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
- **Model Developers:** Neural Magic
This is the 2:4 sparse version of [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B).
On the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), it achieves an average score of 62.16, compared to 63.19 for the dense model—demonstrating a **98.37% accuracy recovery**. On the [Mosaic Eval Gauntlet](https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md) benchmark (version v0.3), it achieves an average score of 53.85, versus 55.34 for the dense model—representing a **97.3% accuracy recovery**.
### Model Optimizations
This model was obtained by pruning all linear operators within transformer blocks to the 2:4 sparsity pattern: in each group of four weights, two are retained while two are pruned. In addition to pruning, the sparse model was trained with knowledge distillation for 13B tokens to recover the accuracy loss incurred by pruning. For pruning, we utilize optimized version of [SparseGPT](https://arxiv.org/abs/2301.00774) through [LLM-Compressor](https://github.com/vllm-project/llm-compressor), and for sparse training with knowledge distillation we utilize [SquareHead approach](https://arxiv.org/abs/2310.06927).
## Deployment with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend. vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Evaluation
This model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1) with the [vLLM](https://docs.vllm.ai/en/stable/) engine for faster inference. In addition to the OpenLLM benchmark, the model was evaluated on the [Mosaic Eval Gauntlet](https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md) benchmark (version v0.3). The evaluation results are summarized below.
### Accuracy
#### Open LLM Leaderboard evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong></td>
<td style="text-align: center"><strong>Llama-3.1-8B</strong></td>
<td style="text-align: center"><strong>Sparse-Llama-3.1-8B-2of4</strong></td>
</tr>
<tr>
<td>ARC-C (25-shot)</td>
<td style="text-align: center">58.2</td>
<td style="text-align: center">59.4</td>
</tr>
<tr>
<td>MMLU (5-shot)</td>
<td style="text-align: center">65.4</td>
<td style="text-align: center">60.6</td>
</tr>
<tr>
<td>HellaSwag (10-shot)</td>
<td style="text-align: center">82.3</td>
<td style="text-align: center">79.8</td>
</tr>
<tr>
<td>WinoGrande (5-shot)</td>
<td style="text-align: center">78.3</td>
<td style="text-align: center">75.9</td>
</tr>
<tr>
<td>GSM8K (5-shot)</td>
<td style="text-align: center">50.7</td>
<td style="text-align: center">56.3</td>
</tr>
<tr>
<td>TruthfulQA (0-shot)</td>
<td style="text-align: center">44.2</td>
<td style="text-align: center">40.9</td>
</tr>
<tr>
<td><strong>Average Score</strong></td>
<td style="text-align: center"><strong>63.19</strong></td>
<td style="text-align: center"><strong>62.16</strong></td>
</tr>
<tr>
<td><strong>Accuracy Recovery (%)</strong></td>
<td style="text-align: center"><strong>100</strong></td>
<td style="text-align: center"><strong>98.37</strong></td>
</tr>
</table>
#### Mosaic Eval Gauntlet evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong></td>
<td style="text-align: center"><strong>Llama-3.1-8B</strong></td>
<td style="text-align: center"><strong>Sparse-Llama-3.1-8B-2of4</strong></td>
</tr>
<tr>
<td>World Knowledge</td>
<td style="text-align: center">59.4</td>
<td style="text-align: center">55.6</td>
</tr>
<tr>
<td>Commonsense Reasoning</td>
<td style="text-align: center">49.3</td>
<td style="text-align: center">50.0</td>
</tr>
<tr>
<td>Language Understanding</td>
<td style="text-align: center">69.8</td>
<td style="text-align: center">69.0</td>
</tr>
<tr>
<td>Symbolic Problem Solving</td>
<td style="text-align: center">40.0</td>
<td style="text-align: center">37.1</td>
</tr>
<tr>
<td>Reading Comprehension</td>
<td style="text-align: center">58.2</td>
<td style="text-align: center">57.5</td>
</tr>
<tr>
<td><strong>Average Score</strong></td>
<td style="text-align: center"><strong>55.34</strong></td>
<td style="text-align: center"><strong>53.85</strong></td>
</tr>
<tr>
<td><strong>Accuracy Recovery (%)</strong></td>
<td style="text-align: center"><strong>100</strong></td>
<td style="text-align: center"><strong>97.3</strong></td>
</tr>
</table>
|