File size: 9,646 Bytes
02776bc f7882f0 02776bc f7882f0 02776bc 9e8cd11 02776bc 2a5e1fd 02776bc 459ac81 02776bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
---
language:
- en
- fr
- es
- pt
- hi
- de
- nl
- it
base_model:
- mistralai/Voxtral-Mini-3B-2507
pipeline_tag: automatic-speech-recognition
tags:
- voxtral
- fp8
- quantized
- multimodal
- conversational
- text-generation-inference
- automatic-speech-recognition
- automatic-speech-translation
- audio-text-to-text
- video-text-to-text
- compressed-tensors
license: apache-2.0
license_name: apache-2.0
name: RedHatAI/Voxtral-Mini-3B-2507-FP8-dynamic
description: A quantized version of the Voxtral-Mini-3B-2507 model, optimized for speech transcription, translation, and audio understanding with FP8 data type quantization.
readme: https://huggingface.co/RedHatAI/Voxtral-Mini-3B-2507-FP8-dynamic/main/README.md
tasks:
- automatic-speech-recognition
- automatic-speech-translation
- audio-to-text
- text-to-text
provider: RedHatAI
license_link: https://www.apache.org/licenses/LICENSE-2.0
---
# Voxtral-Mini-3B-2507-FP8-dynamic
## Model Overview
- **Model Architecture:** VoxtralForConditionalGeneration
- **Input:** Audio-Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Intended Use Cases:** Voxtral builds upon Ministral-3B with powerful audio understanding capabilities.
- **Dedicated transcription mode:** Voxtral can operate in a pure speech transcription mode to maximize performance. By default, Voxtral automatically predicts the source audio language and transcribes the text accordingly
- **Long-form context:** With a 32k token context length, Voxtral handles audios up to 30 minutes for transcription, or 40 minutes for understanding
- **Built-in Q&A and summarization:** Supports asking questions directly through audio. Analyze audio and generate structured summaries without the need for separate ASR and language models
- **Natively multilingual:** Automatic language detection and state-of-the-art performance in the world’s most widely used languages (English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian)
- **Function-calling straight from voice:** Enables direct triggering of backend functions, workflows, or API calls based on spoken user intents
- **Highly capable at text:** Retains the text understanding capabilities of its language model backbone, Ministral-3B
- **Release Date:** 08/21/2025
- **Version:** 1.0
- **Model Developers:** Red Hat
Quantized version of [Voxtral-Mini-3B-2507](https://huggingface.co/mistralai/Voxtral-Mini-3B-2507).
### Model Optimizations
This model was obtained by quantizing activation and weights of [Voxtral-Mini-3B-2507](https://huggingface.co//Llama-3.3-70B-Instruct) to FP8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks of the language model are quantized.
Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme.
The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization.
## Deployment
### Use with vLLM
1. Initialize vLLM server:
```
vllm serve RedHatAI/Voxtral-Mini-3B-2507-FP8-dynamic --tokenizer_mode mistral --config_format mistral --load_format mistral
```
2. Send requests to the server, according to the use case. See the following examples.
<details>
<summary>Audio Instruct</summary>
```python
from mistral_common.protocol.instruct.messages import TextChunk, AudioChunk, UserMessage, AssistantMessage, RawAudio
from mistral_common.audio import Audio
from huggingface_hub import hf_hub_download
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
obama_file = hf_hub_download("patrickvonplaten/audio_samples", "obama.mp3", repo_type="dataset")
bcn_file = hf_hub_download("patrickvonplaten/audio_samples", "bcn_weather.mp3", repo_type="dataset")
def file_to_chunk(file: str) -> AudioChunk:
audio = Audio.from_file(file, strict=False)
return AudioChunk.from_audio(audio)
text_chunk = TextChunk(text="Which speaker is more inspiring? Why? How are they different from each other?")
user_msg = UserMessage(content=[file_to_chunk(obama_file), file_to_chunk(bcn_file), text_chunk]).to_openai()
print(30 * "=" + "USER 1" + 30 * "=")
print(text_chunk.text)
print("\n\n")
response = client.chat.completions.create(
model=model,
messages=[user_msg],
temperature=0.2,
top_p=0.95,
)
content = response.choices[0].message.content
print(30 * "=" + "BOT 1" + 30 * "=")
print(content)
print("\n\n")
# The speaker who is more inspiring is the one who delivered the farewell address, as they express
# gratitude, optimism, and a strong commitment to the nation and its citizens. They emphasize the importance of
# self-government and active citizenship, encouraging everyone to participate in the democratic process. In contrast,
# the other speaker provides a factual update on the weather in Barcelona, which is less inspiring as it
# lacks the emotional and motivational content of the farewell address.
# **Differences:**
# - The farewell address speaker focuses on the values and responsibilities of citizenship, encouraging active participation in democracy.
# - The weather update speaker provides factual information about the temperature in Barcelona, without any emotional or motivational content.
messages = [
user_msg,
AssistantMessage(content=content).to_openai(),
UserMessage(content="Ok, now please summarize the content of the first audio.").to_openai()
]
print(30 * "=" + "USER 2" + 30 * "=")
print(messages[-1]["content"])
print("\n\n")
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0.2,
top_p=0.95,
)
content = response.choices[0].message.content
print(30 * "=" + "BOT 2" + 30 * "=")
print(content)
```
</details>
<details>
<summary>Transcription</summary>
```python
from mistral_common.protocol.transcription.request import TranscriptionRequest
from mistral_common.protocol.instruct.messages import RawAudio
from mistral_common.audio import Audio
from huggingface_hub import hf_hub_download
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
obama_file = hf_hub_download("patrickvonplaten/audio_samples", "obama.mp3", repo_type="dataset")
audio = Audio.from_file(obama_file, strict=False)
audio = RawAudio.from_audio(audio)
req = TranscriptionRequest(model=model, audio=audio, language="en", temperature=0.0).to_openai(exclude=("top_p", "seed"))
response = client.audio.transcriptions.create(**req)
print(response)
```
</details>
## Creation
This model was quantized using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as shown below.
<details>
<summary>Creation details</summary>
```python
import torch
from transformers import VoxtralForConditionalGeneration, AutoProcessor
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
# Select model and load it.
MODEL_ID = "mistralai/Voxtral-Mini-3B-2507"
model = VoxtralForConditionalGeneration.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
processor = AutoProcessor.from_pretrained(MODEL_ID)
# Recipe
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
ignore=["language_model.lm_head", "re:audio_tower.*" ,"re:multi_modal_projector.*"],
)
# Apply algorithms.
oneshot(
model=model,
recipe=recipe,
processor=processor,
)
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-dynamic"
model.save_pretrained(SAVE_DIR, save_compressed=True)
processor.save_pretrained(SAVE_DIR)
```
After quantization, the model can be converted back into the mistralai format using the `convert_voxtral_hf_to_mistral.py` script included with the model.
</details>
## Evaluation
The model was evaluated on the Fleurs transcription task.
Recovery is computed with respect to the complement of the word error rate (WER).
<table border="1" cellspacing="0" cellpadding="6">
<tr>
<th>Benchmark</th>
<th>Language</th>
<th>Voxtral-Mini-3B-2507</th>
<th>Voxtral-Mini-3B-2507-FP8-dynamic<br>(this model)</th>
<th>Recovery</th>
</tr>
<tr>
<td rowspan="7"><strong>Fleurs<br>WER</strong></td>
<td>English</td>
<td>3.89%</td>
<td>3.95%</td>
<td>99.9%</td>
</tr>
<tr>
<td>French</td>
<td>5.07%</td>
<td>4.86%</td>
<td>100.2%</td>
</tr>
<tr>
<td>Spanish</td>
<td>3.63%</td>
<td>3.55%</td>
<td>100.1%</td>
</tr>
<tr>
<td>German</td>
<td>5.00%</td>
<td>5.01%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Italian</td>
<td>2.54%</td>
<td>2.57%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Portuguese</td>
<td>3.85%</td>
<td>4.03%</td>
<td>99.8%</td>
</tr>
<tr>
<td>Dutch</td>
<td>7.01%</td>
<td>7.20%</td>
<td>99.8%</td>
</tr>
</table>
|