Upload folder using huggingface_hub
Browse files- consolidated.safetensors +3 -0
- convert_voxtral_hf_to_mistral.py +215 -0
- params.json +236 -0
consolidated.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5694e04fc45f53436051c68f77f08b7d5379b72788f83bcd5883e1868d3dfca3
|
3 |
+
size 6141906040
|
convert_voxtral_hf_to_mistral.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import argparse
|
16 |
+
import gc
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
import re
|
20 |
+
|
21 |
+
from safetensors.torch import save_file
|
22 |
+
from safetensors.torch import safe_open
|
23 |
+
from huggingface_hub import snapshot_download
|
24 |
+
|
25 |
+
from transformers import VoxtralConfig
|
26 |
+
|
27 |
+
# fmt: off
|
28 |
+
STATE_DICT_MAPPING = {
|
29 |
+
r"^language_model\.lm_head": r"output",
|
30 |
+
r"^language_model\.model\.norm": r"norm",
|
31 |
+
r"^language_model\.model\.embed_tokens": r"tok_embeddings",
|
32 |
+
r"^language_model\.model\.layers\.(\d+)\.input_layernorm": r"layers.\1.attention_norm",
|
33 |
+
r"^language_model\.model\.layers\.(\d+)\.post_attention_layernorm": r"layers.\1.ffn_norm",
|
34 |
+
r"^language_model\.model\.layers\.(\d+)\.self_attn\.(q|k|v|o)_proj": r"layers.\1.attention.w\2",
|
35 |
+
r"^language_model\.model\.layers\.(\d+)\.mlp\.gate_proj": r"layers.\1.feed_forward.w1",
|
36 |
+
r"^language_model\.model\.layers\.(\d+)\.mlp\.down_proj": r"layers.\1.feed_forward.w2",
|
37 |
+
r"^language_model\.model\.layers\.(\d+)\.mlp\.up_proj": r"layers.\1.feed_forward.w3",
|
38 |
+
r"language_model.model.embed_tokens": r"tok_embeddings",
|
39 |
+
r"audio_tower.conv1": r"mm_whisper_embeddings.whisper_encoder.conv_layers.0" ,
|
40 |
+
r"audio_tower.conv2": r"mm_whisper_embeddings.whisper_encoder.conv_layers.1" ,
|
41 |
+
r"audio_tower.layer_norm": r"mm_whisper_embeddings.whisper_encoder.transformer.norm" ,
|
42 |
+
r"audio_tower.layers.(\d+).self_attn.(q|k|v)_proj": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.attention.w\2" ,
|
43 |
+
r"audio_tower.layers.(\d+).self_attn.out_proj": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.attention.wo" ,
|
44 |
+
r"audio_tower.layers.(\d+).self_attn_layer_norm": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.attention_norm" ,
|
45 |
+
r"audio_tower.layers.(\d+).fc(\d+)": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.feed_forward.w\2" ,
|
46 |
+
r"audio_tower.layers.(\d+).final_layer_norm": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.ffn_norm" ,
|
47 |
+
r"multi_modal_projector.linear_1": r"mm_whisper_embeddings.audio_language_projection.0" ,
|
48 |
+
r"multi_modal_projector.linear_2": r"mm_whisper_embeddings.audio_language_projection.2" ,
|
49 |
+
}
|
50 |
+
# fmt: on
|
51 |
+
|
52 |
+
SKIP_KEYS = ["audio_tower.embed_positions.weight"]
|
53 |
+
|
54 |
+
def add_quantization_config(config, hf_config: VoxtralConfig):
|
55 |
+
quantization_config = hf_config.quantization_config
|
56 |
+
mistral_ignore = [] # keys to ignore in the quantization config
|
57 |
+
for hf_key in quantization_config["ignore"]:
|
58 |
+
mistral_key = map_hf_key_to_mistral(hf_key)
|
59 |
+
mistral_ignore.append(mistral_key)
|
60 |
+
quantization_config["ignore"] = mistral_ignore
|
61 |
+
config["quantization"] = quantization_config
|
62 |
+
|
63 |
+
return config
|
64 |
+
|
65 |
+
def map_hf_key_to_mistral(hf_key):
|
66 |
+
"""Map a key from HF format to Mistral format"""
|
67 |
+
for pattern, replacement in STATE_DICT_MAPPING.items():
|
68 |
+
new_key, n_replace = re.subn(pattern, replacement, hf_key)
|
69 |
+
if n_replace > 0:
|
70 |
+
return new_key.replace("weight_scale", "qscale_weight")
|
71 |
+
|
72 |
+
# If no mapping found, return the original key
|
73 |
+
return hf_key.replace("weight_scale", "qscale_weight")
|
74 |
+
|
75 |
+
|
76 |
+
def permute_for_mistral_rope(tensor, n_heads, dim1, dim2):
|
77 |
+
"""Reverse the ROPE permutation to get back to Mistral format."""
|
78 |
+
tensor = tensor.view(n_heads, 2, dim1 // n_heads // 2, dim2)
|
79 |
+
tensor = tensor.transpose(1, 2)
|
80 |
+
tensor = tensor.reshape(dim1, dim2)
|
81 |
+
return tensor
|
82 |
+
|
83 |
+
|
84 |
+
def convert_state_dict(hf_state_dict, config):
|
85 |
+
"""Convert HF Voxtral state dict to Mistral format"""
|
86 |
+
mistral_dict = {}
|
87 |
+
|
88 |
+
num_attention_heads = config["n_heads"]
|
89 |
+
hidden_size = config["dim"]
|
90 |
+
head_dim = config["head_dim"]
|
91 |
+
num_key_value_heads = config["n_kv_heads"]
|
92 |
+
key_value_dim = head_dim * num_key_value_heads
|
93 |
+
query_dim = head_dim * num_attention_heads
|
94 |
+
|
95 |
+
for hf_key, tensor in hf_state_dict.items():
|
96 |
+
if hf_key in SKIP_KEYS:
|
97 |
+
continue
|
98 |
+
|
99 |
+
mistral_key = map_hf_key_to_mistral(hf_key)
|
100 |
+
|
101 |
+
if "language_model" in hf_key:
|
102 |
+
if hf_key.endswith("q_proj.weight"):
|
103 |
+
tensor = permute_for_mistral_rope(tensor, num_attention_heads, query_dim, hidden_size)
|
104 |
+
elif hf_key.endswith("q_proj.weight_scale") and tensor.size(0) == num_attention_heads:
|
105 |
+
tensor = permute_for_mistral_rope(tensor, num_attention_heads, query_dim, 1)
|
106 |
+
elif hf_key.endswith("k_proj.weight"):
|
107 |
+
tensor = permute_for_mistral_rope(tensor, num_key_value_heads, key_value_dim, hidden_size)
|
108 |
+
elif hf_key.endswith("k_proj.weight_scale") and tensor.size(0) == num_key_value_heads:
|
109 |
+
tensor = permute_for_mistral_rope(tensor, num_key_value_heads, key_value_dim, 1)
|
110 |
+
|
111 |
+
mistral_dict[mistral_key] = tensor
|
112 |
+
|
113 |
+
return mistral_dict
|
114 |
+
|
115 |
+
|
116 |
+
def write_model(
|
117 |
+
input_path_or_repo,
|
118 |
+
output_dir,
|
119 |
+
unquantized_model_path=None,
|
120 |
+
):
|
121 |
+
print("Converting HF Voxtral model to Mistral format.")
|
122 |
+
os.makedirs(output_dir, exist_ok=True)
|
123 |
+
|
124 |
+
# Load the HF Voxtral model
|
125 |
+
print(f"Loading HF Voxtral model from {input_path_or_repo}...")
|
126 |
+
hf_config = VoxtralConfig.from_pretrained(input_path_or_repo)
|
127 |
+
|
128 |
+
local_path = snapshot_download(input_path_or_repo)
|
129 |
+
|
130 |
+
# Convert config
|
131 |
+
config_path = os.path.join(local_path, "params.json")
|
132 |
+
with open(config_path, "r") as f:
|
133 |
+
config = json.load(f)
|
134 |
+
if os.path.exists(config_path):
|
135 |
+
if unquantized_model_path is not None:
|
136 |
+
config = add_quantization_config(config, hf_config)
|
137 |
+
|
138 |
+
with open(os.path.join(output_dir, "params.json"), "w") as f:
|
139 |
+
json.dump(config, f, indent=2)
|
140 |
+
else:
|
141 |
+
raise ValueError(f"Unquantized model config not found for {unquantized_model_path}")
|
142 |
+
|
143 |
+
# Convert state dict
|
144 |
+
print("Converting state dict...")
|
145 |
+
tensor_files = sorted([f for f in os.listdir(os.path.join(local_path)) if f.endswith(".safetensors")])
|
146 |
+
|
147 |
+
hf_state_dict = {}
|
148 |
+
|
149 |
+
for file in tensor_files:
|
150 |
+
file_path = os.path.join(local_path, file)
|
151 |
+
with safe_open(file_path, framework="pt", device="cuda") as f:
|
152 |
+
for key in f.keys():
|
153 |
+
hf_state_dict[key] = f.get_tensor(key)
|
154 |
+
|
155 |
+
mistral_state_dict = convert_state_dict(hf_state_dict, config)
|
156 |
+
|
157 |
+
# save the state dict
|
158 |
+
save_file(mistral_state_dict, os.path.join(output_dir, "consolidated.safetensors"))
|
159 |
+
|
160 |
+
del hf_state_dict, mistral_state_dict
|
161 |
+
gc.collect()
|
162 |
+
print("Model converted successfully.")
|
163 |
+
|
164 |
+
def write_tokenizer(input_path_or_repo: str, output_dir: str):
|
165 |
+
"""Extract and save the tokenizer from Voxtral model"""
|
166 |
+
from transformers import MistralCommonTokenizer
|
167 |
+
|
168 |
+
print("Extracting tokenizer...")
|
169 |
+
tokenizer = MistralCommonTokenizer.from_pretrained(input_path_or_repo)
|
170 |
+
tokenizer.save_pretrained(output_dir)
|
171 |
+
print("Tokenizer saved successfully.")
|
172 |
+
|
173 |
+
|
174 |
+
def main():
|
175 |
+
parser = argparse.ArgumentParser(description="Convert HF Voxtral weights to Mistral format")
|
176 |
+
parser.add_argument(
|
177 |
+
"--input_path_or_repo",
|
178 |
+
type=str,
|
179 |
+
default="RedHatAI/Voxtral-Mini-3B-2507-FP8-dynamic",
|
180 |
+
help="Path or repo containing HF Voxtral model",
|
181 |
+
)
|
182 |
+
parser.add_argument(
|
183 |
+
"--output_dir",
|
184 |
+
type=str,
|
185 |
+
default="Voxtral-Mini-3B-2507-FP8-dynamic-converted",
|
186 |
+
help="Location to write Mistral model and tokenizer",
|
187 |
+
)
|
188 |
+
parser.add_argument(
|
189 |
+
"--skip_tokenizer",
|
190 |
+
action="store_true",
|
191 |
+
help="Skip tokenizer conversion"
|
192 |
+
)
|
193 |
+
parser.add_argument(
|
194 |
+
"--unquantized_model_path",
|
195 |
+
type=str,
|
196 |
+
default="mistralai/Voxtral-Mini-3B-2507",
|
197 |
+
help="Path to the unquantized model",
|
198 |
+
)
|
199 |
+
args = parser.parse_args()
|
200 |
+
|
201 |
+
write_model(
|
202 |
+
args.input_path_or_repo,
|
203 |
+
args.output_dir,
|
204 |
+
unquantized_model_path=args.unquantized_model_path,
|
205 |
+
)
|
206 |
+
|
207 |
+
if not args.skip_tokenizer:
|
208 |
+
write_tokenizer(
|
209 |
+
args.input_path_or_repo,
|
210 |
+
args.output_dir,
|
211 |
+
)
|
212 |
+
|
213 |
+
|
214 |
+
if __name__ == "__main__":
|
215 |
+
main()
|
params.json
CHANGED
@@ -30,5 +30,241 @@
|
|
30 |
"downsample_factor": 4
|
31 |
}
|
32 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
}
|
34 |
}
|
|
|
30 |
"downsample_factor": 4
|
31 |
}
|
32 |
}
|
33 |
+
},
|
34 |
+
"quantization": {
|
35 |
+
"config_groups": {
|
36 |
+
"group_0": {
|
37 |
+
"input_activations": {
|
38 |
+
"actorder": null,
|
39 |
+
"block_structure": null,
|
40 |
+
"dynamic": true,
|
41 |
+
"group_size": null,
|
42 |
+
"num_bits": 8,
|
43 |
+
"observer": null,
|
44 |
+
"observer_kwargs": {},
|
45 |
+
"strategy": "token",
|
46 |
+
"symmetric": true,
|
47 |
+
"type": "float"
|
48 |
+
},
|
49 |
+
"output_activations": null,
|
50 |
+
"targets": [
|
51 |
+
"Linear"
|
52 |
+
],
|
53 |
+
"weights": {
|
54 |
+
"actorder": null,
|
55 |
+
"block_structure": null,
|
56 |
+
"dynamic": false,
|
57 |
+
"group_size": null,
|
58 |
+
"num_bits": 8,
|
59 |
+
"observer": "minmax",
|
60 |
+
"observer_kwargs": {},
|
61 |
+
"strategy": "channel",
|
62 |
+
"symmetric": true,
|
63 |
+
"type": "float"
|
64 |
+
}
|
65 |
+
}
|
66 |
+
},
|
67 |
+
"format": "float-quantized",
|
68 |
+
"global_compression_ratio": null,
|
69 |
+
"ignore": [
|
70 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.0.attention.wk",
|
71 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.0.attention.wv",
|
72 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.0.attention.wq",
|
73 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.0.attention.wo",
|
74 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.0.feed_forward.w1",
|
75 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.0.feed_forward.w2",
|
76 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.1.attention.wk",
|
77 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.1.attention.wv",
|
78 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.1.attention.wq",
|
79 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.1.attention.wo",
|
80 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.1.feed_forward.w1",
|
81 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.1.feed_forward.w2",
|
82 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.2.attention.wk",
|
83 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.2.attention.wv",
|
84 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.2.attention.wq",
|
85 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.2.attention.wo",
|
86 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.2.feed_forward.w1",
|
87 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.2.feed_forward.w2",
|
88 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.3.attention.wk",
|
89 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.3.attention.wv",
|
90 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.3.attention.wq",
|
91 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.3.attention.wo",
|
92 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.3.feed_forward.w1",
|
93 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.3.feed_forward.w2",
|
94 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.4.attention.wk",
|
95 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.4.attention.wv",
|
96 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.4.attention.wq",
|
97 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.4.attention.wo",
|
98 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.4.feed_forward.w1",
|
99 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.4.feed_forward.w2",
|
100 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.5.attention.wk",
|
101 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.5.attention.wv",
|
102 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.5.attention.wq",
|
103 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.5.attention.wo",
|
104 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.5.feed_forward.w1",
|
105 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.5.feed_forward.w2",
|
106 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.6.attention.wk",
|
107 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.6.attention.wv",
|
108 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.6.attention.wq",
|
109 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.6.attention.wo",
|
110 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.6.feed_forward.w1",
|
111 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.6.feed_forward.w2",
|
112 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.7.attention.wk",
|
113 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.7.attention.wv",
|
114 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.7.attention.wq",
|
115 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.7.attention.wo",
|
116 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.7.feed_forward.w1",
|
117 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.7.feed_forward.w2",
|
118 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.8.attention.wk",
|
119 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.8.attention.wv",
|
120 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.8.attention.wq",
|
121 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.8.attention.wo",
|
122 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.8.feed_forward.w1",
|
123 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.8.feed_forward.w2",
|
124 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.9.attention.wk",
|
125 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.9.attention.wv",
|
126 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.9.attention.wq",
|
127 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.9.attention.wo",
|
128 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.9.feed_forward.w1",
|
129 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.9.feed_forward.w2",
|
130 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.10.attention.wk",
|
131 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.10.attention.wv",
|
132 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.10.attention.wq",
|
133 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.10.attention.wo",
|
134 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.10.feed_forward.w1",
|
135 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.10.feed_forward.w2",
|
136 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.11.attention.wk",
|
137 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.11.attention.wv",
|
138 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.11.attention.wq",
|
139 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.11.attention.wo",
|
140 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.11.feed_forward.w1",
|
141 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.11.feed_forward.w2",
|
142 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.12.attention.wk",
|
143 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.12.attention.wv",
|
144 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.12.attention.wq",
|
145 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.12.attention.wo",
|
146 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.12.feed_forward.w1",
|
147 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.12.feed_forward.w2",
|
148 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.13.attention.wk",
|
149 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.13.attention.wv",
|
150 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.13.attention.wq",
|
151 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.13.attention.wo",
|
152 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.13.feed_forward.w1",
|
153 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.13.feed_forward.w2",
|
154 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.14.attention.wk",
|
155 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.14.attention.wv",
|
156 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.14.attention.wq",
|
157 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.14.attention.wo",
|
158 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.14.feed_forward.w1",
|
159 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.14.feed_forward.w2",
|
160 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.15.attention.wk",
|
161 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.15.attention.wv",
|
162 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.15.attention.wq",
|
163 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.15.attention.wo",
|
164 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.15.feed_forward.w1",
|
165 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.15.feed_forward.w2",
|
166 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.16.attention.wk",
|
167 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.16.attention.wv",
|
168 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.16.attention.wq",
|
169 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.16.attention.wo",
|
170 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.16.feed_forward.w1",
|
171 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.16.feed_forward.w2",
|
172 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.17.attention.wk",
|
173 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.17.attention.wv",
|
174 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.17.attention.wq",
|
175 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.17.attention.wo",
|
176 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.17.feed_forward.w1",
|
177 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.17.feed_forward.w2",
|
178 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.18.attention.wk",
|
179 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.18.attention.wv",
|
180 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.18.attention.wq",
|
181 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.18.attention.wo",
|
182 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.18.feed_forward.w1",
|
183 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.18.feed_forward.w2",
|
184 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.19.attention.wk",
|
185 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.19.attention.wv",
|
186 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.19.attention.wq",
|
187 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.19.attention.wo",
|
188 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.19.feed_forward.w1",
|
189 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.19.feed_forward.w2",
|
190 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.20.attention.wk",
|
191 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.20.attention.wv",
|
192 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.20.attention.wq",
|
193 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.20.attention.wo",
|
194 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.20.feed_forward.w1",
|
195 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.20.feed_forward.w2",
|
196 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.21.attention.wk",
|
197 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.21.attention.wv",
|
198 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.21.attention.wq",
|
199 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.21.attention.wo",
|
200 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.21.feed_forward.w1",
|
201 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.21.feed_forward.w2",
|
202 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.22.attention.wk",
|
203 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.22.attention.wv",
|
204 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.22.attention.wq",
|
205 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.22.attention.wo",
|
206 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.22.feed_forward.w1",
|
207 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.22.feed_forward.w2",
|
208 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.23.attention.wk",
|
209 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.23.attention.wv",
|
210 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.23.attention.wq",
|
211 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.23.attention.wo",
|
212 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.23.feed_forward.w1",
|
213 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.23.feed_forward.w2",
|
214 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.24.attention.wk",
|
215 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.24.attention.wv",
|
216 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.24.attention.wq",
|
217 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.24.attention.wo",
|
218 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.24.feed_forward.w1",
|
219 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.24.feed_forward.w2",
|
220 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.25.attention.wk",
|
221 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.25.attention.wv",
|
222 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.25.attention.wq",
|
223 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.25.attention.wo",
|
224 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.25.feed_forward.w1",
|
225 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.25.feed_forward.w2",
|
226 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.26.attention.wk",
|
227 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.26.attention.wv",
|
228 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.26.attention.wq",
|
229 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.26.attention.wo",
|
230 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.26.feed_forward.w1",
|
231 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.26.feed_forward.w2",
|
232 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.27.attention.wk",
|
233 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.27.attention.wv",
|
234 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.27.attention.wq",
|
235 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.27.attention.wo",
|
236 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.27.feed_forward.w1",
|
237 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.27.feed_forward.w2",
|
238 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.28.attention.wk",
|
239 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.28.attention.wv",
|
240 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.28.attention.wq",
|
241 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.28.attention.wo",
|
242 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.28.feed_forward.w1",
|
243 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.28.feed_forward.w2",
|
244 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.29.attention.wk",
|
245 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.29.attention.wv",
|
246 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.29.attention.wq",
|
247 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.29.attention.wo",
|
248 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.29.feed_forward.w1",
|
249 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.29.feed_forward.w2",
|
250 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.30.attention.wk",
|
251 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.30.attention.wv",
|
252 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.30.attention.wq",
|
253 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.30.attention.wo",
|
254 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.30.feed_forward.w1",
|
255 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.30.feed_forward.w2",
|
256 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.31.attention.wk",
|
257 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.31.attention.wv",
|
258 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.31.attention.wq",
|
259 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.31.attention.wo",
|
260 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.31.feed_forward.w1",
|
261 |
+
"mm_whisper_embeddings.whisper_encoder.transformer.layers.31.feed_forward.w2",
|
262 |
+
"output",
|
263 |
+
"mm_whisper_embeddings.audio_language_projection.0",
|
264 |
+
"mm_whisper_embeddings.audio_language_projection.2"
|
265 |
+
],
|
266 |
+
"kv_cache_scheme": null,
|
267 |
+
"quant_method": "compressed-tensors",
|
268 |
+
"quantization_status": "compressed"
|
269 |
}
|
270 |
}
|