---
language:
- en
- fr
- es
- pt
- hi
- de
- nl
- it
base_model:
- mistralai/Voxtral-Mini-3B-2507
pipeline_tag: automatic-speech-recognition
tags:
- voxtral
- fp8
- quantized
- multimodal
- conversational
- text-generation-inference
- automatic-speech-recognition
- automatic-speech-translation
- audio-text-to-text
- video-text-to-text
- compressed-tensors
license: apache-2.0
license_name: apache-2.0
name: RedHatAI/Voxtral-Mini-3B-2507-FP8-dynamic
description: A quantized version of the Voxtral-Mini-3B-2507 model, optimized for speech transcription, translation, and audio understanding with FP8 data type quantization.
readme: https://huggingface.co/RedHatAI/Voxtral-Mini-3B-2507-FP8-dynamic/main/README.md
tasks:
- automatic-speech-recognition
- automatic-speech-translation
- audio-to-text
- text-to-text
provider: RedHatAI
license_link: https://www.apache.org/licenses/LICENSE-2.0
---
# Voxtral-Mini-3B-2507-FP8-dynamic
## Model Overview
- **Model Architecture:** VoxtralForConditionalGeneration
- **Input:** Audio-Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Intended Use Cases:** Voxtral builds upon Ministral-3B with powerful audio understanding capabilities.
- **Dedicated transcription mode:** Voxtral can operate in a pure speech transcription mode to maximize performance. By default, Voxtral automatically predicts the source audio language and transcribes the text accordingly
- **Long-form context:** With a 32k token context length, Voxtral handles audios up to 30 minutes for transcription, or 40 minutes for understanding
- **Built-in Q&A and summarization:** Supports asking questions directly through audio. Analyze audio and generate structured summaries without the need for separate ASR and language models
- **Natively multilingual:** Automatic language detection and state-of-the-art performance in the world’s most widely used languages (English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian)
- **Function-calling straight from voice:** Enables direct triggering of backend functions, workflows, or API calls based on spoken user intents
- **Highly capable at text:** Retains the text understanding capabilities of its language model backbone, Ministral-3B
- **Release Date:** 08/21/2025
- **Version:** 1.0
- **Model Developers:** Red Hat
Quantized version of [Voxtral-Mini-3B-2507](https://huggingface.co/mistralai/Voxtral-Mini-3B-2507).
### Model Optimizations
This model was obtained by quantizing activation and weights of [Voxtral-Mini-3B-2507](https://huggingface.co//Llama-3.3-70B-Instruct) to FP8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks of the language model are quantized.
Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme.
The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization.
## Deployment
### Use with vLLM
1. Initialize vLLM server:
```
vllm serve RedHatAI/Voxtral-Mini-3B-2507-FP8-dynamic --tokenizer_mode mistral --config_format mistral --load_format mistral
```
2. Send requests to the server, according to the use case. See the following examples.
Audio Instruct
```python
from mistral_common.protocol.instruct.messages import TextChunk, AudioChunk, UserMessage, AssistantMessage, RawAudio
from mistral_common.audio import Audio
from huggingface_hub import hf_hub_download
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://Transcription
```python
from mistral_common.protocol.transcription.request import TranscriptionRequest
from mistral_common.protocol.instruct.messages import RawAudio
from mistral_common.audio import Audio
from huggingface_hub import hf_hub_download
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://Creation details
```python
import torch
from transformers import VoxtralForConditionalGeneration, AutoProcessor
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
# Select model and load it.
MODEL_ID = "mistralai/Voxtral-Mini-3B-2507"
model = VoxtralForConditionalGeneration.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
processor = AutoProcessor.from_pretrained(MODEL_ID)
# Recipe
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
ignore=["language_model.lm_head", "re:audio_tower.*" ,"re:multi_modal_projector.*"],
)
# Apply algorithms.
oneshot(
model=model,
recipe=recipe,
processor=processor,
)
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-dynamic"
model.save_pretrained(SAVE_DIR, save_compressed=True)
processor.save_pretrained(SAVE_DIR)
```
After quantization, the model can be converted back into the mistralai format using the `convert_voxtral_hf_to_mistral.py` script included with the model.
Benchmark | Language | Voxtral-Mini-3B-2507 | Voxtral-Mini-3B-2507-FP8-dynamic (this model) |
Recovery |
---|---|---|---|---|
Fleurs WER |
English | 3.89% | 3.95% | 99.9% |
French | 5.07% | 4.86% | 100.2% | |
Spanish | 3.63% | 3.55% | 100.1% | |
German | 5.00% | 5.01% | 100.0% | |
Italian | 2.54% | 2.57% | 100.0% | |
Portuguese | 3.85% | 4.03% | 99.8% | |
Dutch | 7.01% | 7.20% | 99.8% |