File size: 5,573 Bytes
			
			| eb8bf23 938a123 eb8bf23 938a123 80578f6 938a123 eb8bf23 938a123 eb8bf23 938a123 80578f6 eb8bf23 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | import json
import gradio as gr
from PIL import Image
import safetensors.torch
import timm
from timm.models import VisionTransformer
import torch
from torchvision.transforms import transforms
from torchvision.transforms import InterpolationMode
import torchvision.transforms.functional as TF
torch.set_grad_enabled(False)
class Fit(torch.nn.Module):
    def __init__(
        self,
        bounds: tuple[int, int] | int,
        interpolation = InterpolationMode.LANCZOS,
        grow: bool = True,
        pad: float | None = None
    ):
        super().__init__()
        self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds
        self.interpolation = interpolation
        self.grow = grow
        self.pad = pad
    def forward(self, img: Image) -> Image:
        wimg, himg = img.size
        hbound, wbound = self.bounds
        hscale = hbound / himg
        wscale = wbound / wimg
        if not self.grow:
            hscale = min(hscale, 1.0)
            wscale = min(wscale, 1.0)
        scale = min(hscale, wscale)
        if scale == 1.0:
            return img
        hnew = min(round(himg * scale), hbound)
        wnew = min(round(wimg * scale), wbound)
        img = TF.resize(img, (hnew, wnew), self.interpolation)
        if self.pad is None:
            return img
        hpad = hbound - hnew
        wpad = wbound - wnew
        tpad = hpad // 2
        bpad = hpad - tpad
        lpad = wpad // 2
        rpad = wpad - lpad
        return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad)
    def __repr__(self) -> str:
        return (
            f"{self.__class__.__name__}(" +
            f"bounds={self.bounds}, " +
            f"interpolation={self.interpolation.value}, " +
            f"grow={self.grow}, " +
            f"pad={self.pad})"
        )
class CompositeAlpha(torch.nn.Module):
    def __init__(
        self,
        background: tuple[float, float, float] | float,
    ):
        super().__init__()
        self.background = (background, background, background) if isinstance(background, float) else background
        self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2)
    def forward(self, img: torch.Tensor) -> torch.Tensor:
        if img.shape[-3] == 3:
            return img
        alpha = img[..., 3, None, :, :]
        img[..., :3, :, :] *= alpha
        background = self.background.expand(-1, img.shape[-2], img.shape[-1])
        if background.ndim == 1:
            background = background[:, None, None]
        elif background.ndim == 2:
            background = background[None, :, :]
        img[..., :3, :, :] += (1.0 - alpha) * background
        return img[..., :3, :, :]
    def __repr__(self) -> str:
        return (
            f"{self.__class__.__name__}(" +
            f"background={self.background})"
        )
transform = transforms.Compose([
    Fit((384, 384)),
    transforms.ToTensor(),
    CompositeAlpha(0.5),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
    transforms.CenterCrop((384, 384)),
])
model = timm.create_model(
    "vit_so400m_patch14_siglip_384.webli",
    pretrained=False,
    num_classes=9083,
) # type: VisionTransformer
safetensors.torch.load_model(model, "JTP_PILOT/JTP_PILOT-e4-vit_so400m_patch14_siglip_384.safetensors")
model.eval()
if torch.cuda.is_available():
    model.cuda()
    if torch.cuda.get_device_capability()[0] >= 7: # tensor cores
        model.to(dtype=torch.float16, memory_format=torch.channels_last)
with open("JTP_PILOT/tags.json", "r") as file:
    tags = json.load(file) # type: dict
allowed_tags = list(tags.keys())
for idx, tag in enumerate(allowed_tags):
    allowed_tags[idx] = tag.replace("_", " ")
def create_tags(image, threshold):
    img = image.convert('RGB')
    tensor = transform(img).unsqueeze(0) # type: torch.Tensor
    if torch.cuda.is_available():
        tensor.cuda()
        if torch.cuda.get_device_capability()[0] >= 7:
            tensor.to(dtype=torch.float16, memory_format=torch.channels_last)
    with torch.no_grad():
        logits = model(tensor)
        probabilities = torch.nn.functional.sigmoid(logits[0])
        indices = torch.where(probabilities > threshold)[0]
        values = probabilities[indices]
    temp = []
    tag_score = dict()
    for i in range(indices.size(0)):
        temp.append([allowed_tags[indices[i]], values[i].item()])
        tag_score[allowed_tags[indices[i]]] = values[i].item()
    temp = [t[0] for t in temp]
    text_no_impl = ", ".join(temp)
    return text_no_impl, tag_score
with gr.Blocks() as demo:
    gr.Markdown("""
    ## Joint Tagger Project: PILOT
    This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results).  A threshold of 0.2 is recommended.  Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags.
    This tagger is the result of joint efforts between members of the RedRocket team.
    Special thanks to Minotoro at frosting.ai for providing the compute power for this project.
    """)
    gr.Interface(
        create_tags,
        inputs=[gr.Image(label="Source", sources=['upload', 'webcam'], type='pil'), gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold")],
        outputs=[
            gr.Textbox(label="Tag String"),
            gr.Label(label="Tag Predictions", num_top_classes=200),
        ],
        allow_flagging="never",
    )
if __name__ == "__main__":
    demo.launch() | 
