Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- pytorch
|
| 5 |
+
- diffusers
|
| 6 |
+
- unconditional-audio-generation
|
| 7 |
+
- diffusion-models-class
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# Model Card for Unit 4 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
|
| 11 |
+
|
| 12 |
+
This model is a diffusion model for unconditional audio generation of music in the genre Electronic
|
| 13 |
+
|
| 14 |
+
## Usage
|
| 15 |
+
|
| 16 |
+
<pre>
|
| 17 |
+
from IPython.display import Audio
|
| 18 |
+
from diffusers import DiffusionPipeline
|
| 19 |
+
|
| 20 |
+
pipe = DiffusionPipeline.from_pretrained("Ryukijano/audio-diffusion-electronic")
|
| 21 |
+
output = pipe()
|
| 22 |
+
display(output.images[0])
|
| 23 |
+
display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate()))
|
| 24 |
+
</pre>
|