Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- it
|
| 5 |
+
- en
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# Mistral-7B-v0.1-Italian-LAPT
|
| 9 |
+
<div align="center">
|
| 10 |
+
|
| 11 |
+
<img src="https://github.com/Andrew-Wyn/images/blob/master/sava/italian_adapt-img.jpg?raw=true" width="400" height="400" style="border-radius:10%" />
|
| 12 |
+
|
| 13 |
+
</div>
|
| 14 |
+
|
| 15 |
+
The **Mistral-7B-v0.1-Adapted** collection of large language models (LLMs), is a collection of adapted generative models in 7B (text in/text out), adapted models from **Mistral-7B-Base-v0.1**.
|
| 16 |
+
|
| 17 |
+
*Mistral-v0.1-Italian-LAPT* is a continual trained mistral model.
|
| 18 |
+
|
| 19 |
+
The tokenizer of this models after adaptation is the same of [Minverva-3B](https://huggingface.co/sapienzanlp/Minerva-3B-base-v1.0).
|
| 20 |
+
|
| 21 |
+
**Model developer:** SapienzaNLP, ISTI-CNR, ILC-CNR
|
| 22 |
+
|
| 23 |
+
**Model Architecture:** Mistral-7B-v0.1-Adapted is an auto-regressive language model that uses an optimized transformer architecture.
|
| 24 |
+
|
| 25 |
+
## Data used for the adaptation
|
| 26 |
+
|
| 27 |
+
The **Mistral-7B-v0.1-Adapted** model are trained on a collection of Italian and English data extracted from [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX).
|
| 28 |
+
The data are extracted to be skewed toward Italian language with a ration of one over four. Extracting the first 9B tokens from Italian part of CulturaX and the first 3B tokens from English part of CulturaX.
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
## Use with Transformers
|
| 32 |
+
|
| 33 |
+
You can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function.
|
| 34 |
+
|
| 35 |
+
Make sure to update your transformers installation via pip install --upgrade transformers.
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
import transformers
|
| 39 |
+
import torch
|
| 40 |
+
|
| 41 |
+
model_id = "SemanticAlignment/Mistral-v0.1-Italian-LAPT"
|
| 42 |
+
|
| 43 |
+
pipeline = transformers.pipeline(
|
| 44 |
+
"text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto"
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
pipeline("Cosa si può fare in una bella giornata di sole?")
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
## Citation
|
| 51 |
+
|
| 52 |
+
If you use any part of this work, please consider citing the paper as follows:
|
| 53 |
+
|
| 54 |
+
```bibtex
|
| 55 |
+
@misc{moroni2025optimizingllmsitalianreducing,
|
| 56 |
+
title={Optimizing LLMs for Italian: Reducing Token Fertility and Enhancing Efficiency Through Vocabulary Adaptation},
|
| 57 |
+
author={Luca Moroni and Giovanni Puccetti and Pere-Lluis Huguet Cabot and Andrei Stefan Bejgu and Edoardo Barba and Alessio Miaschi and Felice Dell'Orletta and Andrea Esuli and Roberto Navigli},
|
| 58 |
+
year={2025},
|
| 59 |
+
eprint={2504.17025},
|
| 60 |
+
archivePrefix={arXiv},
|
| 61 |
+
primaryClass={cs.CL},
|
| 62 |
+
url={https://arxiv.org/abs/2504.17025},
|
| 63 |
+
}
|
| 64 |
+
```
|