--- library_name: peft license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: emotion-model11_0 results: [] --- # emotion-model11_0 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9531 - Accuracy: 0.6135 - F1: 0.5573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 41 | 1.3368 | 0.3804 | 0.2096 | | 1.3413 | 2.0 | 82 | 1.2883 | 0.3804 | 0.2096 | | 1.2917 | 3.0 | 123 | 1.0577 | 0.5521 | 0.4841 | | 1.1702 | 4.0 | 164 | 1.0247 | 0.5337 | 0.4033 | | 1.1099 | 5.0 | 205 | 0.9804 | 0.5460 | 0.4324 | | 1.1099 | 6.0 | 246 | 0.9531 | 0.6135 | 0.5573 | | 1.0856 | 7.0 | 287 | 0.9336 | 0.6135 | 0.5301 | | 1.0752 | 8.0 | 328 | 0.9257 | 0.5767 | 0.4883 | | 1.0393 | 9.0 | 369 | 0.9182 | 0.5828 | 0.5188 | | 1.0449 | 10.0 | 410 | 0.9131 | 0.5828 | 0.5188 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1