File size: 5,265 Bytes
93e82b1
c4171ba
 
93e82b1
 
 
366f159
 
 
93e82b1
 
 
c4171ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381e337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acae0ff
381e337
 
 
 
 
 
c4171ba
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
language:
- en
license: apache-2.0
datasets:
- HuggingFaceTB/cosmopedia
- EleutherAI/proof-pile-2
- bigcode/the-stack-dedup
- math-ai/AutoMathText
metrics:
- accuracy
- code_eval
model-index:
- name: Mistral_Pro_8B_v0.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 62.2
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TencentARC/Mistral_Pro_8B_v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 82.13
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TencentARC/Mistral_Pro_8B_v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 61.74
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TencentARC/Mistral_Pro_8B_v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 49.32
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TencentARC/Mistral_Pro_8B_v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 76.8
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TencentARC/Mistral_Pro_8B_v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 34.19
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TencentARC/Mistral_Pro_8B_v0.1
      name: Open LLM Leaderboard
---


# Mistral-Pro-8B Model Card

## Model Description
Mistral-Pro is a progressive version of the original [Mistral](https://huggingface.co/mistralai/Mistral-7B-v0.1) model, enhanced by the addition of Transformer blocks. It specializes in integrating both general language understanding and domain-specific knowledge, particularly in programming and mathematics.

## Development and Training
Developed by Tencent's ARC Lab, Mistral-Pro is an 8 billion parameter model. It's an expansion of Mistral-7B, further trained on code and math corpora.

## Intended Use
This model is designed for a wide range of NLP tasks, with a focus on programming, mathematics, and general language tasks. It suits scenarios requiring integration of natural and programming languages.

## Performance
Mistral_Pro_8B_v0.1 showcases superior performance on a range of benchmarks. It enhances the code and math performance of Mistral. Furthermore, it matches the performance of the recently dominant model, [Gemma](https://huggingface.co/google/gemma-7b).

### Overall Performance on Languages, math and code tasks

  | Model | ARC | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K  | HumanEval | 
  | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | 
  | Gemma-7B | 61.9 | 82.2 | 64.6 | 44.8 | 79.0 | 50.9 | 32.3 | 
  | Mistral-7B | 60.8 | 83.3 | 62.7 | 42.6 | 78.0 | 39.2 | 28.7 |
  | Mistral_Pro_8B_v0.1 | 63.2 | 82.6 | 60.6 | 48.3 | 78.9 | 50.6 | 32.9 | 


## Limitations
While Mistral-Pro addresses some limitations of previous models in the series, it may still encounter challenges specific to highly specialized domains or tasks.

## Ethical Considerations
Users should be aware of potential biases in the model and use it responsibly, considering its impact on various applications.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TencentARC__Mistral_Pro_8B_v0.1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |61.06|
|AI2 Reasoning Challenge (25-Shot)|62.20|
|HellaSwag (10-Shot)              |82.13|
|MMLU (5-Shot)                    |61.74|
|TruthfulQA (0-shot)              |49.32|
|Winogrande (5-shot)              |76.80|
|GSM8k (5-shot)                   |34.19|