Upload README.md
Browse files
README.md
CHANGED
|
@@ -42,15 +42,12 @@ quantized_by: TheBloke
|
|
| 42 |
<!-- description start -->
|
| 43 |
# Description
|
| 44 |
|
| 45 |
-
This repo contains
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
To test, please build AutoGPTQ from source using that PR. You also need Transformers version 4.36.0, released December 11th.
|
| 52 |
-
|
| 53 |
-
Transformers support has just arrived also via two PRs - and is expected in main Transformers + Optimum tomorrow (Dec 12th).
|
| 54 |
|
| 55 |
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
|
| 56 |
|
|
@@ -58,6 +55,7 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
|
|
| 58 |
<!-- repositories-available start -->
|
| 59 |
## Repositories available
|
| 60 |
|
|
|
|
| 61 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ)
|
| 62 |
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
|
| 63 |
* [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)
|
|
@@ -74,6 +72,16 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
|
|
| 74 |
<!-- prompt-template end -->
|
| 75 |
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
<!-- README_GPTQ.md-provided-files start -->
|
| 78 |
## Provided files, and GPTQ parameters
|
| 79 |
|
|
@@ -98,13 +106,13 @@ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with T
|
|
| 98 |
|
| 99 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
|
| 100 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
| 101 |
-
| main | 4 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 23.81 GB | No | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
|
| 102 |
-
| gptq-4bit-128g-actorder_True | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 24.70 GB | No | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
|
| 103 |
-
| gptq-4bit-32g-actorder_True | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 27.42 GB | No | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
|
| 104 |
-
| gptq-3bit--1g-actorder_True | 3 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.01 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
|
| 105 |
-
| gptq-3bit-128g-actorder_True | 3 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.85 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
|
| 106 |
-
| gptq-8bit--1g-actorder_True | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 47.04 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
|
| 107 |
-
| gptq-8bit-128g-actorder_True | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 48.10 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
|
| 108 |
|
| 109 |
<!-- README_GPTQ.md-provided-files end -->
|
| 110 |
|
|
@@ -178,7 +186,11 @@ Note that using Git with HF repos is strongly discouraged. It will be much slowe
|
|
| 178 |
<!-- README_GPTQ.md-text-generation-webui start -->
|
| 179 |
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
| 180 |
|
| 181 |
-
**NOTE**:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
| 184 |
|
|
@@ -203,15 +215,21 @@ It is strongly recommended to use the text-generation-webui one-click-installers
|
|
| 203 |
|
| 204 |
<!-- README_GPTQ.md-text-generation-webui end -->
|
| 205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
<!-- README_GPTQ.md-use-from-python start -->
|
| 207 |
## Python code example: inference from this GPTQ model
|
| 208 |
|
| 209 |
### Install the necessary packages
|
| 210 |
|
| 211 |
-
Requires: Transformers 4.
|
| 212 |
|
| 213 |
```shell
|
| 214 |
-
pip3 install --upgrade transformers optimum
|
| 215 |
# If using PyTorch 2.1 + CUDA 12.x:
|
| 216 |
pip3 install --upgrade auto-gptq
|
| 217 |
# or, if using PyTorch 2.1 + CUDA 11.x:
|
|
@@ -224,35 +242,28 @@ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Lik
|
|
| 224 |
pip3 uninstall -y auto-gptq
|
| 225 |
git clone https://github.com/PanQiWei/AutoGPTQ
|
| 226 |
cd AutoGPTQ
|
| 227 |
-
|
| 228 |
-
pip3 install .
|
| 229 |
```
|
| 230 |
|
| 231 |
### Example Python code
|
| 232 |
|
| 233 |
```python
|
| 234 |
-
from transformers import AutoTokenizer
|
| 235 |
-
from auto_gptq import AutoGPTQForCausalLM
|
| 236 |
|
| 237 |
model_name_or_path = "TheBloke/Mixtral-8x7B-v0.1-GPTQ"
|
| 238 |
-
|
| 239 |
-
model_name_or_path = args.model_dir
|
| 240 |
# To use a different branch, change revision
|
| 241 |
-
# For example: revision="gptq-4bit-
|
| 242 |
-
model =
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
prompt = "Tell me about AI"
|
| 255 |
-
prompt_template=f'''{prompt}'''
|
| 256 |
|
| 257 |
print("\n\n*** Generate:")
|
| 258 |
|
|
@@ -260,9 +271,31 @@ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
|
| 260 |
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
|
| 261 |
print(tokenizer.decode(output[0]))
|
| 262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
```
|
| 264 |
<!-- README_GPTQ.md-use-from-python end -->
|
| 265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
<!-- footer start -->
|
| 268 |
<!-- 200823 -->
|
|
|
|
| 42 |
<!-- description start -->
|
| 43 |
# Description
|
| 44 |
|
| 45 |
+
This repo contains GPTQ model files for [Mistral AI_'s Mixtral 8X7B v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1).
|
| 46 |
|
| 47 |
+
Mixtral GPTQs currently require:
|
| 48 |
+
* Transformers 4.36.0 or later
|
| 49 |
+
* either, AutoGPTQ 0.6 compiled from source, or
|
| 50 |
+
* Transformers 4.37.0.dev0 compiled from Github with: `pip3 install git+https://github.com/huggingface/transformers`
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
|
| 53 |
|
|
|
|
| 55 |
<!-- repositories-available start -->
|
| 56 |
## Repositories available
|
| 57 |
|
| 58 |
+
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/mixtral-8x7b-v0.1-AWQ)
|
| 59 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ)
|
| 60 |
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
|
| 61 |
* [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)
|
|
|
|
| 72 |
<!-- prompt-template end -->
|
| 73 |
|
| 74 |
|
| 75 |
+
|
| 76 |
+
<!-- README_GPTQ.md-compatible clients start -->
|
| 77 |
+
## Known compatible clients / servers
|
| 78 |
+
|
| 79 |
+
GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
|
| 80 |
+
|
| 81 |
+
Mixtral GPTQs currently have special requirements - see Description above.
|
| 82 |
+
|
| 83 |
+
<!-- README_GPTQ.md-compatible clients end -->
|
| 84 |
+
|
| 85 |
<!-- README_GPTQ.md-provided-files start -->
|
| 86 |
## Provided files, and GPTQ parameters
|
| 87 |
|
|
|
|
| 106 |
|
| 107 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
|
| 108 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
| 109 |
+
| [main](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 23.81 GB | No | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
|
| 110 |
+
| [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 24.70 GB | No | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
|
| 111 |
+
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 27.42 GB | No | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
|
| 112 |
+
| [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.01 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
|
| 113 |
+
| [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.85 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
|
| 114 |
+
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 47.04 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
|
| 115 |
+
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 48.10 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
|
| 116 |
|
| 117 |
<!-- README_GPTQ.md-provided-files end -->
|
| 118 |
|
|
|
|
| 186 |
<!-- README_GPTQ.md-text-generation-webui start -->
|
| 187 |
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
| 188 |
|
| 189 |
+
**NOTE**: Requires:
|
| 190 |
+
|
| 191 |
+
* Transformers 4.36.0, or Transformers 4.37.0.dev0 from Github
|
| 192 |
+
* Either AutoGPTQ 0.6 compiled from source and `Loader: AutoGPTQ`,
|
| 193 |
+
* or, `Loader: Transformers`, if you installed Transformers from Github: `pip3 install git+https://github.com/huggingface/transformers`
|
| 194 |
|
| 195 |
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
| 196 |
|
|
|
|
| 215 |
|
| 216 |
<!-- README_GPTQ.md-text-generation-webui end -->
|
| 217 |
|
| 218 |
+
<!-- README_GPTQ.md-use-from-tgi start -->
|
| 219 |
+
## Serving this model from Text Generation Inference (TGI)
|
| 220 |
+
|
| 221 |
+
Not currently supported for Mixtral models.
|
| 222 |
+
|
| 223 |
+
<!-- README_GPTQ.md-use-from-tgi end -->
|
| 224 |
<!-- README_GPTQ.md-use-from-python start -->
|
| 225 |
## Python code example: inference from this GPTQ model
|
| 226 |
|
| 227 |
### Install the necessary packages
|
| 228 |
|
| 229 |
+
Requires: Transformers 4.37.0.dev0 from Github, Optimum 1.16.0 or later, and AutoGPTQ 0.5.1 or later.
|
| 230 |
|
| 231 |
```shell
|
| 232 |
+
pip3 install --upgrade "git+https://github.com/huggingface/transformers" optimum
|
| 233 |
# If using PyTorch 2.1 + CUDA 12.x:
|
| 234 |
pip3 install --upgrade auto-gptq
|
| 235 |
# or, if using PyTorch 2.1 + CUDA 11.x:
|
|
|
|
| 242 |
pip3 uninstall -y auto-gptq
|
| 243 |
git clone https://github.com/PanQiWei/AutoGPTQ
|
| 244 |
cd AutoGPTQ
|
| 245 |
+
DISABLE_QIGEN=1 pip3 install .
|
|
|
|
| 246 |
```
|
| 247 |
|
| 248 |
### Example Python code
|
| 249 |
|
| 250 |
```python
|
| 251 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
| 252 |
|
| 253 |
model_name_or_path = "TheBloke/Mixtral-8x7B-v0.1-GPTQ"
|
|
|
|
|
|
|
| 254 |
# To use a different branch, change revision
|
| 255 |
+
# For example: revision="gptq-4bit-128g-actorder_True"
|
| 256 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
| 257 |
+
device_map="auto",
|
| 258 |
+
trust_remote_code=False,
|
| 259 |
+
revision="main")
|
| 260 |
+
|
| 261 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
| 262 |
+
|
| 263 |
+
prompt = "Write a story about llamas"
|
| 264 |
+
system_message = "You are a story writing assistant"
|
| 265 |
+
prompt_template=f'''{prompt}
|
| 266 |
+
'''
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
print("\n\n*** Generate:")
|
| 269 |
|
|
|
|
| 271 |
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
|
| 272 |
print(tokenizer.decode(output[0]))
|
| 273 |
|
| 274 |
+
# Inference can also be done using transformers' pipeline
|
| 275 |
+
|
| 276 |
+
print("*** Pipeline:")
|
| 277 |
+
pipe = pipeline(
|
| 278 |
+
"text-generation",
|
| 279 |
+
model=model,
|
| 280 |
+
tokenizer=tokenizer,
|
| 281 |
+
max_new_tokens=512,
|
| 282 |
+
do_sample=True,
|
| 283 |
+
temperature=0.7,
|
| 284 |
+
top_p=0.95,
|
| 285 |
+
top_k=40,
|
| 286 |
+
repetition_penalty=1.1
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
print(pipe(prompt_template)[0]['generated_text'])
|
| 290 |
```
|
| 291 |
<!-- README_GPTQ.md-use-from-python end -->
|
| 292 |
|
| 293 |
+
<!-- README_GPTQ.md-compatibility start -->
|
| 294 |
+
## Compatibility
|
| 295 |
+
|
| 296 |
+
The files provided are tested to work with AutoGPTQ 0.6 (compiled from source) and Transformers 4.37.0 (installed from Github).
|
| 297 |
+
|
| 298 |
+
<!-- README_GPTQ.md-compatibility end -->
|
| 299 |
|
| 300 |
<!-- footer start -->
|
| 301 |
<!-- 200823 -->
|