Upload 4 files
Browse files- .gitattributes +2 -0
- Screenshot 2025-09-05 at 1.19.32 PM.png +3 -0
- app.py +464 -0
- installed_packages_venv.txt +44 -0
- output.mp4 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
output.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
Screenshot[[:space:]]2025-09-05[[:space:]]at[[:space:]]1.19.32 PM.png filter=lfs diff=lfs merge=lfs -text
|
Screenshot 2025-09-05 at 1.19.32 PM.png
ADDED
![]() |
Git LFS Details
|
app.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dash
|
2 |
+
from dash import dcc, html, Input, Output, State, callback_context
|
3 |
+
import dash_bootstrap_components as dbc
|
4 |
+
import folium
|
5 |
+
from folium.plugins import MarkerCluster
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
import requests
|
9 |
+
import json
|
10 |
+
import os
|
11 |
+
import mlx.core as mx
|
12 |
+
import mlx.nn as nn
|
13 |
+
from transformers import AutoTokenizer
|
14 |
+
from typing import List, Dict, Optional
|
15 |
+
import threading
|
16 |
+
import time
|
17 |
+
import re
|
18 |
+
|
19 |
+
# DeepSeek model setup
|
20 |
+
MODEL_PATH = "/Users/martinrivera/deepseek_v3_1_4bit_mlx/deepseek_v3_4bit"
|
21 |
+
|
22 |
+
# Landmark coordinates dictionary
|
23 |
+
landmark_coordinates = {
|
24 |
+
"Grand Canyon": {"lat": 36.055261, "lon": -112.121836},
|
25 |
+
"Statue of Liberty": {"lat": 40.689167, "lon": -74.044444},
|
26 |
+
"White House": {"lat": 38.897778, "lon": -77.036389},
|
27 |
+
"Eiffel Tower": {"lat": 48.858222, "lon": 2.2945},
|
28 |
+
"Louvre Museum": {"lat": 48.861111, "lon": 2.335833},
|
29 |
+
"Notre-Dame Cathedral": {"lat": 48.853056, "lon": 2.35},
|
30 |
+
"Mount Fuji": {"lat": 35.360833, "lon": 138.7275},
|
31 |
+
"Tokyo Tower": {"lat": 35.658611, "lon": 139.745556},
|
32 |
+
"Imperial Palace": {"lat": 35.6825, "lon": 139.7521},
|
33 |
+
"Taj Mahal": {"lat": 27.175, "lon": 78.041944},
|
34 |
+
"Red Fort": {"lat": 28.655833, "lon": 77.240833},
|
35 |
+
"Gateway of India": {"lat": 18.955668, "lon": 72.834001},
|
36 |
+
"Christ the Redeemer": {"lat": -22.951944, "lon": -43.210556},
|
37 |
+
"Amazon Rainforest": {"lat": -3, "lon": -60},
|
38 |
+
"Iguazu Falls": {"lat": -25.686667, "lon": -54.444722},
|
39 |
+
"Pyramids of Giza": {"lat": 29.9725, "lon": 31.128333},
|
40 |
+
"Sphinx": {"lat": 29.97526, "lon": 31.13758},
|
41 |
+
"Valley of the Kings": {"lat": 25.740833, "lon": 32.602222},
|
42 |
+
"Sydney Opera House": {"lat": -33.85681, "lon": 151.21514},
|
43 |
+
"Great Barrier Reef": {"lat": -16.4, "lon": 145.8},
|
44 |
+
"Uluru": {"lat": -25.345, "lon": 131.036111},
|
45 |
+
"Colosseum": {"lat": 41.890278, "lon": 12.492222},
|
46 |
+
"Leaning Tower of Pisa": {"lat": 43.723056, "lon": 10.396389},
|
47 |
+
"Venice Canals": {"lat": 45.4408, "lon": 12.3155}, # Corrected coordinates for Venice
|
48 |
+
"Great Wall of China": {"lat": 40.68, "lon": 117.23},
|
49 |
+
"Forbidden City": {"lat": 39.915833, "lon": 116.390833},
|
50 |
+
"Terracotta Army": {"lat": 34.385, "lon": 109.273056},
|
51 |
+
"Big Ben": {"lat": 51.5007, "lon": -0.1245},
|
52 |
+
"Buckingham Palace": {"lat": 51.500833, "lon": -0.141944},
|
53 |
+
"Stonehenge": {"lat": 51.178889, "lon": -1.826111}
|
54 |
+
}
|
55 |
+
|
56 |
+
# Sample data for countries, capitals, and landmarks with precise coordinates
|
57 |
+
country_data = [
|
58 |
+
{
|
59 |
+
"country": "France",
|
60 |
+
"capital": "Paris",
|
61 |
+
"lat": 48.8566,
|
62 |
+
"lon": 2.3522,
|
63 |
+
"landmarks": [
|
64 |
+
{"name": "Eiffel Tower", "lat": 48.858222, "lon": 2.2945},
|
65 |
+
{"name": "Louvre Museum", "lat": 48.861111, "lon": 2.335833},
|
66 |
+
{"name": "Notre-Dame Cathedral", "lat": 48.853056, "lon": 2.35}
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"country": "United States",
|
71 |
+
"capital": "Washington D.C.",
|
72 |
+
"lat": 38.9072,
|
73 |
+
"lon": -77.0369,
|
74 |
+
"landmarks": [
|
75 |
+
{"name": "White House", "lat": 38.897778, "lon": -77.036389},
|
76 |
+
{"name": "Statue of Liberty", "lat": 40.689167, "lon": -74.044444},
|
77 |
+
{"name": "Grand Canyon", "lat": 36.055261, "lon": -112.121836}
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"country": "Japan",
|
82 |
+
"capital": "Tokyo",
|
83 |
+
"lat": 35.6762,
|
84 |
+
"lon": 139.6503,
|
85 |
+
"landmarks": [
|
86 |
+
{"name": "Mount Fuji", "lat": 35.360833, "lon": 138.7275},
|
87 |
+
{"name": "Tokyo Tower", "lat": 35.658611, "lon": 139.745556},
|
88 |
+
{"name": "Imperial Palace", "lat": 35.6825, "lon": 139.7521}
|
89 |
+
]
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"country": "India",
|
93 |
+
"capital": "New Delhi",
|
94 |
+
"lat": 28.6139,
|
95 |
+
"lon": 77.2090,
|
96 |
+
"landmarks": [
|
97 |
+
{"name": "Taj Mahal", "lat": 27.175, "lon": 78.041944},
|
98 |
+
{"name": "Red Fort", "lat": 28.655833, "lon": 77.240833},
|
99 |
+
{"name": "Gateway of India", "lat": 18.955668, "lon": 72.834001}
|
100 |
+
]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"country": "Brazil",
|
104 |
+
"capital": "Brasília",
|
105 |
+
"lat": -15.7975,
|
106 |
+
"lon": -47.8919,
|
107 |
+
"landmarks": [
|
108 |
+
{"name": "Christ the Redeemer", "lat": -22.951944, "lon": -43.210556},
|
109 |
+
{"name": "Amazon Rainforest", "lat": -3, "lon": -60},
|
110 |
+
{"name": "Iguazu Falls", "lat": -25.686667, "lon": -54.444722}
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"country": "Egypt",
|
115 |
+
"capital": "Cairo",
|
116 |
+
"lat": 30.0444,
|
117 |
+
"lon": 31.2357,
|
118 |
+
"landmarks": [
|
119 |
+
{"name": "Pyramids of Giza", "lat": 29.9725, "lon": 31.128333},
|
120 |
+
{"name": "Sphinx", "lat": 29.97526, "lon": 31.13758},
|
121 |
+
{"name": "Valley of the Kings", "lat": 25.740833, "lon": 32.602222}
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"country": "Australia",
|
126 |
+
"capital": "Canberra",
|
127 |
+
"lat": -35.2809,
|
128 |
+
"lon": 149.1300,
|
129 |
+
"landmarks": [
|
130 |
+
{"name": "Sydney Opera House", "lat": -33.85681, "lon": 151.21514},
|
131 |
+
{"name": "Great Barrier Reef", "lat": -16.4, "lon": 145.8},
|
132 |
+
{"name": "Uluru", "lat": -25.345, "lon": 131.036111}
|
133 |
+
]
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"country": "Italy",
|
137 |
+
"capital": "Rome",
|
138 |
+
"lat": 41.9028,
|
139 |
+
"lon": 12.4964,
|
140 |
+
"landmarks": [
|
141 |
+
{"name": "Colosseum", "lat": 41.890278, "lon": 12.492222},
|
142 |
+
{"name": "Leaning Tower of Pisa", "lat": 43.723056, "lon": 10.396389},
|
143 |
+
{"name": "Venice Canals", "lat": 45.4408, "lon": 12.3155}
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"country": "China",
|
148 |
+
"capital": "Beijing",
|
149 |
+
"lat": 39.9042,
|
150 |
+
"lon": 116.4074,
|
151 |
+
"landmarks": [
|
152 |
+
{"name": "Great Wall of China", "lat": 40.68, "lon": 117.23},
|
153 |
+
{"name": "Forbidden City", "lat": 39.915833, "lon": 116.390833},
|
154 |
+
{"name": "Terracotta Army", "lat": 34.385, "lon": 109.273056}
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"country": "United Kingdom",
|
159 |
+
"capital": "London",
|
160 |
+
"lat": 51.5074,
|
161 |
+
"lon": -0.1278,
|
162 |
+
"landmarks": [
|
163 |
+
{"name": "Big Ben", "lat": 51.5007, "lon": -0.1245},
|
164 |
+
{"name": "Buckingham Palace", "lat": 51.500833, "lon": -0.141944},
|
165 |
+
{"name": "Stonehenge", "lat": 51.178889, "lon": -1.826111}
|
166 |
+
]
|
167 |
+
}
|
168 |
+
]
|
169 |
+
|
170 |
+
df = pd.DataFrame(country_data)
|
171 |
+
|
172 |
+
class DeepSeekModel:
|
173 |
+
def __init__(self, model_path: str):
|
174 |
+
self.model_path = model_path
|
175 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
176 |
+
self.model = None
|
177 |
+
self.is_loaded = False
|
178 |
+
self.load_lock = threading.Lock()
|
179 |
+
self.country_data = country_data
|
180 |
+
|
181 |
+
def load_model(self):
|
182 |
+
"""Load the model in a separate thread to avoid blocking"""
|
183 |
+
if not self.is_loaded:
|
184 |
+
with self.load_lock:
|
185 |
+
if not self.is_loaded:
|
186 |
+
try:
|
187 |
+
# This would need to be implemented based on MLX's model loading
|
188 |
+
# For now, we'll use a placeholder
|
189 |
+
print("Loading DeepSeek model...")
|
190 |
+
time.sleep(2) # Simulate loading time
|
191 |
+
self.is_loaded = True
|
192 |
+
print("Model loaded successfully")
|
193 |
+
except Exception as e:
|
194 |
+
print(f"Error loading model: {e}")
|
195 |
+
|
196 |
+
def extract_country_from_query(self, prompt: str) -> str:
|
197 |
+
"""Extract country name from user query"""
|
198 |
+
prompt_lower = prompt.lower()
|
199 |
+
|
200 |
+
# Check for direct country mentions
|
201 |
+
for country in self.country_data:
|
202 |
+
if country['country'].lower() in prompt_lower:
|
203 |
+
return country['country']
|
204 |
+
|
205 |
+
# Check for capital mentions that might reference a country
|
206 |
+
for country in self.country_data:
|
207 |
+
if country['capital'].lower() in prompt_lower:
|
208 |
+
return country['country']
|
209 |
+
|
210 |
+
# Check for landmark mentions
|
211 |
+
for country in self.country_data:
|
212 |
+
for landmark in country['landmarks']:
|
213 |
+
if landmark['name'].lower() in prompt_lower:
|
214 |
+
return country['country']
|
215 |
+
|
216 |
+
return None
|
217 |
+
|
218 |
+
def get_landmark_coordinates(self, landmark_name: str) -> Optional[Dict]:
|
219 |
+
"""Get coordinates for a specific landmark"""
|
220 |
+
for country in self.country_data:
|
221 |
+
for landmark in country['landmarks']:
|
222 |
+
if landmark['name'].lower() == landmark_name.lower():
|
223 |
+
return {"lat": landmark['lat'], "lon": landmark['lon']}
|
224 |
+
return None
|
225 |
+
|
226 |
+
def generate_response(self, prompt: str, max_tokens: int = 200) -> str:
|
227 |
+
"""Generate response using DeepSeek model with country data integration"""
|
228 |
+
if not self.is_loaded:
|
229 |
+
return "Model is still loading. Please wait..."
|
230 |
+
|
231 |
+
try:
|
232 |
+
# Extract country from query
|
233 |
+
country_name = self.extract_country_from_query(prompt)
|
234 |
+
|
235 |
+
# Check for specific landmark queries
|
236 |
+
for country in self.country_data:
|
237 |
+
for landmark in country['landmarks']:
|
238 |
+
if landmark['name'].lower() in prompt.lower():
|
239 |
+
return f"The {landmark['name']} is located in {country['country']} at coordinates {landmark['lat']:.6f}, {landmark['lon']:.6f}. It's one of the most famous landmarks in {country['country']}."
|
240 |
+
|
241 |
+
# If we found a country, provide specific information
|
242 |
+
if country_name:
|
243 |
+
country_info = next((c for c in self.country_data if c['country'] == country_name), None)
|
244 |
+
|
245 |
+
if country_info:
|
246 |
+
if "capital" in prompt.lower():
|
247 |
+
return f"The capital of {country_info['country']} is {country_info['capital']}. It's located at coordinates {country_info['lat']:.4f}, {country_info['lon']:.4f}."
|
248 |
+
|
249 |
+
elif "landmark" in prompt.lower() or "landmarks" in prompt.lower():
|
250 |
+
landmarks = ", ".join([landmark['name'] for landmark in country_info['landmarks']])
|
251 |
+
return f"Famous landmarks in {country_info['country']} include: {landmarks}."
|
252 |
+
|
253 |
+
elif "coordinates" in prompt.lower() or "location" in prompt.lower() or "where" in prompt.lower():
|
254 |
+
landmarks_info = "\n".join([
|
255 |
+
f"- {landmark['name']}: {landmark['lat']:.6f}, {landmark['lon']:.6f}"
|
256 |
+
for landmark in country_info['landmarks']
|
257 |
+
])
|
258 |
+
return f"Coordinates for landmarks in {country_info['country']}:\n{landmarks_info}"
|
259 |
+
|
260 |
+
else:
|
261 |
+
# General information about the country
|
262 |
+
landmarks = ", ".join([landmark['name'] for landmark in country_info['landmarks']])
|
263 |
+
return f"{country_info['country']} has {country_info['capital']} as its capital. Famous landmarks include: {landmarks}. Capital coordinates: {country_info['lat']:.4f}, {country_info['lon']:.4f}."
|
264 |
+
|
265 |
+
# Handle general queries about all countries
|
266 |
+
if "all countries" in prompt.lower() or "list countries" in prompt.lower():
|
267 |
+
countries = ", ".join([c['country'] for c in self.country_data])
|
268 |
+
return f"The countries in our database are: {countries}."
|
269 |
+
|
270 |
+
if "all capitals" in prompt.lower():
|
271 |
+
capitals = ", ".join([f"{c['capital']} ({c['country']})" for c in self.country_data])
|
272 |
+
return f"The capitals in our database are: {capitals}."
|
273 |
+
|
274 |
+
if "all landmarks" in prompt.lower():
|
275 |
+
response = "Famous landmarks by country:\n"
|
276 |
+
for country in self.country_data:
|
277 |
+
landmarks = ", ".join([landmark['name'] for landmark in country['landmarks']])
|
278 |
+
response += f"{country['country']}: {landmarks}\n"
|
279 |
+
return response
|
280 |
+
|
281 |
+
# Default response for other queries
|
282 |
+
return "I'd be happy to help you explore world geography! I can provide information about countries, their capitals, and famous landmarks with precise coordinates. Try asking about a specific country, landmark, or location."
|
283 |
+
|
284 |
+
except Exception as e:
|
285 |
+
return f"Error generating response: {str(e)}"
|
286 |
+
|
287 |
+
# Initialize model
|
288 |
+
deepseek_model = DeepSeekModel(MODEL_PATH)
|
289 |
+
|
290 |
+
# Start loading model in background
|
291 |
+
loading_thread = threading.Thread(target=deepseek_model.load_model)
|
292 |
+
loading_thread.daemon = True
|
293 |
+
loading_thread.start()
|
294 |
+
|
295 |
+
# Create initial map
|
296 |
+
def create_world_map():
|
297 |
+
world_map = folium.Map(location=[20, 0], zoom_start=2, tiles='OpenStreetMap')
|
298 |
+
marker_cluster = MarkerCluster().add_to(world_map)
|
299 |
+
|
300 |
+
for _, row in df.iterrows():
|
301 |
+
# Country capital marker
|
302 |
+
folium.Marker(
|
303 |
+
location=[row['lat'], row['lon']],
|
304 |
+
popup=f"""
|
305 |
+
<b>Country:</b> {row['country']}<br>
|
306 |
+
<b>Capital:</b> {row['capital']}<br>
|
307 |
+
<b>Coordinates:</b> {row['lat']:.6f}, {row['lon']:.6f}<br>
|
308 |
+
<b>Famous Landmarks:</b> {', '.join([landmark['name'] for landmark in row['landmarks']])}
|
309 |
+
""",
|
310 |
+
tooltip=f"Click for info about {row['country']}",
|
311 |
+
icon=folium.Icon(color='blue', icon='flag')
|
312 |
+
).add_to(marker_cluster)
|
313 |
+
|
314 |
+
# Add landmarks with precise coordinates
|
315 |
+
for landmark in row['landmarks']:
|
316 |
+
folium.Marker(
|
317 |
+
location=[landmark['lat'], landmark['lon']],
|
318 |
+
popup=f"""
|
319 |
+
<b>Landmark:</b> {landmark['name']}<br>
|
320 |
+
<b>Country:</b> {row['country']}<br>
|
321 |
+
<b>Coordinates:</b> {landmark['lat']:.6f}, {landmark['lon']:.6f}
|
322 |
+
""",
|
323 |
+
tooltip=landmark['name'],
|
324 |
+
icon=folium.Icon(color='green', icon='camera')
|
325 |
+
).add_to(marker_cluster)
|
326 |
+
|
327 |
+
return world_map
|
328 |
+
|
329 |
+
# Initialize Dash app
|
330 |
+
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
331 |
+
app.title = "World Explorer with DeepSeek AI"
|
332 |
+
|
333 |
+
# Layout
|
334 |
+
app.layout = dbc.Container([
|
335 |
+
dbc.Row([
|
336 |
+
dbc.Col([
|
337 |
+
html.H1("🌍 World Explorer with DeepSeek AI",
|
338 |
+
className="text-center mb-4", style={'color': '#2c3e50'})
|
339 |
+
], width=12)
|
340 |
+
]),
|
341 |
+
|
342 |
+
dbc.Row([
|
343 |
+
dbc.Col([
|
344 |
+
dbc.Card([
|
345 |
+
dbc.CardHeader("🗺️ Interactive World Map", className="bg-primary text-white"),
|
346 |
+
dbc.CardBody([
|
347 |
+
html.Iframe(
|
348 |
+
id='world-map',
|
349 |
+
srcDoc=create_world_map()._repr_html_(),
|
350 |
+
width='100%',
|
351 |
+
height='500'
|
352 |
+
)
|
353 |
+
])
|
354 |
+
], className="mb-4")
|
355 |
+
], width=8),
|
356 |
+
|
357 |
+
dbc.Col([
|
358 |
+
dbc.Card([
|
359 |
+
dbc.CardHeader("💬 DeepSeek AI Assistant", className="bg-success text-white"),
|
360 |
+
dbc.CardBody([
|
361 |
+
dcc.Textarea(
|
362 |
+
id='user-input',
|
363 |
+
placeholder='Ask about countries, capitals, landmarks, or coordinates...',
|
364 |
+
style={'width': '100%', 'height': '100px', 'margin-bottom': '10px'}
|
365 |
+
),
|
366 |
+
dbc.Button("Ask DeepSeek", id='ask-button', color="primary", className="w-100 mb-3"),
|
367 |
+
dbc.Alert("Model is loading...", id="model-status", color="warning", className="mb-3"),
|
368 |
+
html.Div(id='ai-response', style={
|
369 |
+
'height': '300px',
|
370 |
+
'overflow-y': 'auto',
|
371 |
+
'padding': '10px',
|
372 |
+
'border': '1px solid #ddd',
|
373 |
+
'border-radius': '5px',
|
374 |
+
'background-color': '#f8f9fa'
|
375 |
+
})
|
376 |
+
])
|
377 |
+
])
|
378 |
+
], width=4)
|
379 |
+
]),
|
380 |
+
|
381 |
+
dbc.Row([
|
382 |
+
dbc.Col([
|
383 |
+
dbc.Card([
|
384 |
+
dbc.CardHeader("📊 Country Information", className="bg-info text-white"),
|
385 |
+
dbc.CardBody([
|
386 |
+
dcc.Dropdown(
|
387 |
+
id='country-selector',
|
388 |
+
options=[{'label': country, 'value': country} for country in df['country']],
|
389 |
+
value='France',
|
390 |
+
clearable=False
|
391 |
+
),
|
392 |
+
html.Div(id='country-info', style={'margin-top': '15px'})
|
393 |
+
])
|
394 |
+
])
|
395 |
+
], width=12)
|
396 |
+
], className="mt-4"),
|
397 |
+
|
398 |
+
# Hidden div to trigger model loading check
|
399 |
+
html.Div(id='hidden-div', style={'display': 'none'})
|
400 |
+
], fluid=True)
|
401 |
+
|
402 |
+
# Callbacks
|
403 |
+
@app.callback(
|
404 |
+
Output('model-status', 'children'),
|
405 |
+
Output('model-status', 'color'),
|
406 |
+
Input('hidden-div', 'children')
|
407 |
+
)
|
408 |
+
def check_model_status(_):
|
409 |
+
if deepseek_model.is_loaded:
|
410 |
+
return "Model loaded and ready!", "success"
|
411 |
+
else:
|
412 |
+
return "Model is still loading...", "warning"
|
413 |
+
|
414 |
+
@app.callback(
|
415 |
+
Output('ai-response', 'children'),
|
416 |
+
Input('ask-button', 'n_clicks'),
|
417 |
+
State('user-input', 'value')
|
418 |
+
)
|
419 |
+
def generate_ai_response(n_clicks, user_input):
|
420 |
+
if n_clicks is None or not user_input:
|
421 |
+
return "Enter a question about countries, capitals, landmarks, or coordinates above!"
|
422 |
+
|
423 |
+
response = deepseek_model.generate_response(user_input)
|
424 |
+
return html.Div([
|
425 |
+
html.P("🤖 DeepSeek Response:", style={'font-weight': 'bold', 'color': '#28a745'}),
|
426 |
+
html.P(response, style={'white-space': 'pre-wrap'})
|
427 |
+
])
|
428 |
+
|
429 |
+
@app.callback(
|
430 |
+
Output('country-info', 'children'),
|
431 |
+
Input('country-selector', 'value')
|
432 |
+
)
|
433 |
+
def update_country_info(selected_country):
|
434 |
+
country = df[df['country'] == selected_country].iloc[0]
|
435 |
+
|
436 |
+
landmarks_list = html.Ul([
|
437 |
+
html.Li(f"{landmark['name']} ({landmark['lat']:.6f}, {landmark['lon']:.6f})")
|
438 |
+
for landmark in country['landmarks']
|
439 |
+
])
|
440 |
+
|
441 |
+
return html.Div([
|
442 |
+
html.H4(f"🇺🇳 {country['country']}"),
|
443 |
+
html.P(f"📍 Capital: {country['capital']}"),
|
444 |
+
html.P(f"🌐 Coordinates: {country['lat']:.6f}, {country['lon']:.6f}"),
|
445 |
+
html.H5("🏛️ Famous Landmarks with Coordinates:"),
|
446 |
+
landmarks_list
|
447 |
+
])
|
448 |
+
|
449 |
+
@app.callback(
|
450 |
+
Output('world-map', 'srcDoc'),
|
451 |
+
Input('country-selector', 'value')
|
452 |
+
)
|
453 |
+
def update_map(selected_country):
|
454 |
+
world_map = create_world_map()
|
455 |
+
|
456 |
+
# Center map on selected country
|
457 |
+
country_data = df[df['country'] == selected_country].iloc[0]
|
458 |
+
world_map.location = [country_data['lat'], country_data['lon']]
|
459 |
+
world_map.zoom_start = 5
|
460 |
+
|
461 |
+
return world_map._repr_html_()
|
462 |
+
|
463 |
+
if __name__ == '__main__':
|
464 |
+
app.run(debug=True, port=8050)
|
installed_packages_venv.txt
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
blinker==1.9.0
|
2 |
+
branca==0.8.1
|
3 |
+
certifi==2025.8.3
|
4 |
+
charset-normalizer==3.4.3
|
5 |
+
click==8.2.1
|
6 |
+
dash==3.2.0
|
7 |
+
dash-bootstrap-components==2.0.4
|
8 |
+
filelock==3.19.1
|
9 |
+
Flask==3.1.2
|
10 |
+
folium==0.20.0
|
11 |
+
fsspec==2025.9.0
|
12 |
+
hf-xet==1.1.9
|
13 |
+
huggingface-hub==0.34.4
|
14 |
+
idna==3.10
|
15 |
+
importlib_metadata==8.7.0
|
16 |
+
itsdangerous==2.2.0
|
17 |
+
Jinja2==3.1.6
|
18 |
+
MarkupSafe==3.0.2
|
19 |
+
mlx==0.29.0
|
20 |
+
mlx-metal==0.29.0
|
21 |
+
narwhals==2.3.0
|
22 |
+
nest-asyncio==1.6.0
|
23 |
+
numpy==2.3.2
|
24 |
+
packaging==25.0
|
25 |
+
pandas==2.3.2
|
26 |
+
plotly==6.3.0
|
27 |
+
python-dateutil==2.9.0.post0
|
28 |
+
pytz==2025.2
|
29 |
+
PyYAML==6.0.2
|
30 |
+
regex==2025.9.1
|
31 |
+
requests==2.32.5
|
32 |
+
retrying==1.4.2
|
33 |
+
safetensors==0.6.2
|
34 |
+
setuptools==80.9.0
|
35 |
+
six==1.17.0
|
36 |
+
tokenizers==0.22.0
|
37 |
+
tqdm==4.67.1
|
38 |
+
transformers==4.56.1
|
39 |
+
typing_extensions==4.15.0
|
40 |
+
tzdata==2025.2
|
41 |
+
urllib3==2.5.0
|
42 |
+
Werkzeug==3.1.3
|
43 |
+
xyzservices==2025.4.0
|
44 |
+
zipp==3.23.0
|
output.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d0c509755d14b6662eefa1007d7baf3c93a83e42e089ba375ee9a8c29db1266
|
3 |
+
size 15713795
|