File size: 7,534 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from os.path import join

import torch
from pytorch_lightning import LightningDataModule
from pytorch_lightning.utilities import rank_zero_only, rank_zero_warn
from torch.utils.data import Subset
from torch_geometric.loader import DataLoader
from torch_scatter import scatter
from tqdm import tqdm

from visnet.datasets import *
from visnet.utils import MissingLabelException, make_splits


class DataModule(LightningDataModule):
    def __init__(self, hparams):
        super(DataModule, self).__init__()
        self.hparams.update(hparams.__dict__) if hasattr(hparams, "__dict__") else self.hparams.update(hparams)
        self._mean, self._std = None, None
        self._saved_dataloaders = dict()
        self.dataset = None

    def prepare_dataset(self):
        
        assert hasattr(self, f"_prepare_{self.hparams['dataset']}_dataset"), f"Dataset {self.hparams['dataset']} not defined"
        dataset_factory = lambda t: getattr(self, f"_prepare_{t}_dataset")()
        self.idx_train, self.idx_val, self.idx_test = dataset_factory(self.hparams["dataset"])
            
        print(f"train {len(self.idx_train)}, val {len(self.idx_val)}, test {len(self.idx_test)}")
        self.train_dataset = Subset(self.dataset, self.idx_train)
        self.val_dataset = Subset(self.dataset, self.idx_val)
        self.test_dataset = Subset(self.dataset, self.idx_test)

        if self.hparams["standardize"]:
            self._standardize()

    def train_dataloader(self):
        return self._get_dataloader(self.train_dataset, "train")

    def val_dataloader(self):
        loaders = [self._get_dataloader(self.val_dataset, "val")]
        delta = 1 if self.hparams['reload'] == 1 else 2
        if (
            len(self.test_dataset) > 0
            and (self.trainer.current_epoch + delta) % self.hparams["test_interval"] == 0
        ):
            loaders.append(self._get_dataloader(self.test_dataset, "test"))
        return loaders

    def test_dataloader(self):
        return self._get_dataloader(self.test_dataset, "test")

    @property
    def atomref(self):
        if hasattr(self.dataset, "get_atomref"):
            return self.dataset.get_atomref()
        return None

    @property
    def mean(self):
        return self._mean

    @property
    def std(self):
        return self._std

    def _get_dataloader(self, dataset, stage, store_dataloader=True):
        store_dataloader = (store_dataloader and not self.hparams["reload"])
        if stage in self._saved_dataloaders and store_dataloader:
            return self._saved_dataloaders[stage]

        if stage == "train":
            batch_size = self.hparams["batch_size"]
            shuffle = True
        elif stage in ["val", "test"]:
            batch_size = self.hparams["inference_batch_size"]
            shuffle = False

        dl = DataLoader(
            dataset=dataset,
            batch_size=batch_size,
            shuffle=shuffle,
            num_workers=self.hparams["num_workers"],
            pin_memory=True,
        )

        if store_dataloader:
            self._saved_dataloaders[stage] = dl
        return dl
    
    @rank_zero_only
    def _standardize(self):
        def get_label(batch, atomref):
            if batch.y is None:
                raise MissingLabelException()

            if atomref is None:
                return batch.y.clone()

            atomref_energy = scatter(atomref[batch.z], batch.batch, dim=0)
            return (batch.y.squeeze() - atomref_energy.squeeze()).clone()

        data = tqdm(
            self._get_dataloader(self.train_dataset, "val", store_dataloader=False), 
            desc="computing mean and std",
        )
        try:
            atomref = self.atomref if self.hparams["prior_model"] == "Atomref" else None
            ys = torch.cat([get_label(batch, atomref) for batch in data])
        except MissingLabelException:
            rank_zero_warn(
                "Standardize is true but failed to compute dataset mean and "
                "standard deviation. Maybe the dataset only contains forces."
            )
            return None

        self._mean = ys.mean(dim=0)
        self._std = ys.std(dim=0)
    
    def _prepare_Chignolin_dataset(self):
        
        self.dataset = Chignolin(root=self.hparams["dataset_root"])
        train_size = self.hparams["train_size"]
        val_size = self.hparams["val_size"]
        
        idx_train, idx_val, idx_test = make_splits(
            len(self.dataset),
            train_size,
            val_size,
            None,
            self.hparams["seed"],
            join(self.hparams["log_dir"], "splits.npz"),
            self.hparams["splits"],
        )

        return idx_train, idx_val, idx_test
    
    def _prepare_MD17_dataset(self):
        
        self.dataset = MD17(root=self.hparams["dataset_root"], dataset_arg=self.hparams["dataset_arg"])
        train_size = self.hparams["train_size"]
        val_size = self.hparams["val_size"]
        
        idx_train, idx_val, idx_test = make_splits(
            len(self.dataset),
            train_size,
            val_size,
            None,
            self.hparams["seed"],
            join(self.hparams["log_dir"], "splits.npz"),
            self.hparams["splits"],
        )

        return idx_train, idx_val, idx_test

    def _prepare_MD22_dataset(self):
        
        self.dataset = MD22(root=self.hparams["dataset_root"], dataset_arg=self.hparams["dataset_arg"])
        train_val_size = self.dataset.molecule_splits[self.hparams["dataset_arg"]]
        train_size = round(train_val_size * 0.95)
        val_size = train_val_size - train_size
        
        idx_train, idx_val, idx_test = make_splits(
            len(self.dataset),
            train_size,
            val_size,
            None,
            self.hparams["seed"],
            join(self.hparams["log_dir"], "splits.npz"),
            self.hparams["splits"],
        )

        return idx_train, idx_val, idx_test

    def _prepare_Molecule3D_dataset(self):
        
        self.dataset = Molecule3D(root=self.hparams["dataset_root"])
        split_dict = self.dataset.get_idx_split(self.hparams['split_mode'])
        idx_train = split_dict['train']
        idx_val = split_dict['valid']
        idx_test = split_dict['test']
        
        return idx_train, idx_val, idx_test
    
    def _prepare_QM9_dataset(self):
        
        self.dataset = QM9(root=self.hparams["dataset_root"], dataset_arg=self.hparams["dataset_arg"])
        train_size = self.hparams["train_size"]
        val_size = self.hparams["val_size"]
        
        idx_train, idx_val, idx_test = make_splits(
            len(self.dataset),
            train_size,
            val_size,
            None,
            self.hparams["seed"],
            join(self.hparams["log_dir"], "splits.npz"),
            self.hparams["splits"],
        )

        return idx_train, idx_val, idx_test
    
    def _prepare_rMD17_dataset(self):
        
        self.dataset = rMD17(root=self.hparams["dataset_root"], dataset_arg=self.hparams["dataset_arg"])
        train_size = self.hparams["train_size"]
        val_size = self.hparams["val_size"]
        
        idx_train, idx_val, idx_test = make_splits(
            len(self.dataset),
            train_size,
            val_size,
            None,
            self.hparams["seed"],
            join(self.hparams["log_dir"], "splits.npz"),
            self.hparams["splits"],
        )

        return idx_train, idx_val, idx_test