File size: 9,828 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_cluster import radius_graph
from torch_geometric.nn import MessagePassing


class CosineCutoff(nn.Module):
    
    def __init__(self, cutoff):
        super(CosineCutoff, self).__init__()
        
        self.cutoff = cutoff

    def forward(self, distances):
        cutoffs = 0.5 * (torch.cos(distances * math.pi / self.cutoff) + 1.0)
        cutoffs = cutoffs * (distances < self.cutoff).float()
        return cutoffs


class ExpNormalSmearing(nn.Module):
    def __init__(self, cutoff=5.0, num_rbf=50, trainable=True):
        super(ExpNormalSmearing, self).__init__()
        self.cutoff = cutoff
        self.num_rbf = num_rbf
        self.trainable = trainable

        self.cutoff_fn = CosineCutoff(cutoff)
        self.alpha = 5.0 / cutoff

        means, betas = self._initial_params()
        if trainable:
            self.register_parameter("means", nn.Parameter(means))
            self.register_parameter("betas", nn.Parameter(betas))
        else:
            self.register_buffer("means", means)
            self.register_buffer("betas", betas)

    def _initial_params(self):
        start_value = torch.exp(torch.scalar_tensor(-self.cutoff))
        means = torch.linspace(start_value, 1, self.num_rbf)
        betas = torch.tensor([(2 / self.num_rbf * (1 - start_value)) ** -2] * self.num_rbf)
        return means, betas

    def reset_parameters(self):
        means, betas = self._initial_params()
        self.means.data.copy_(means)
        self.betas.data.copy_(betas)

    def forward(self, dist):
        dist = dist.unsqueeze(-1)
        return self.cutoff_fn(dist) * torch.exp(-self.betas * (torch.exp(self.alpha * (-dist)) - self.means) ** 2)


class GaussianSmearing(nn.Module):
    def __init__(self, cutoff=5.0, num_rbf=50, trainable=True):
        super(GaussianSmearing, self).__init__()
        self.cutoff = cutoff
        self.num_rbf = num_rbf
        self.trainable = trainable

        offset, coeff = self._initial_params()
        if trainable:
            self.register_parameter("coeff", nn.Parameter(coeff))
            self.register_parameter("offset", nn.Parameter(offset))
        else:
            self.register_buffer("coeff", coeff)
            self.register_buffer("offset", offset)

    def _initial_params(self):
        offset = torch.linspace(0, self.cutoff, self.num_rbf)
        coeff = -0.5 / (offset[1] - offset[0]) ** 2
        return offset, coeff

    def reset_parameters(self):
        offset, coeff = self._initial_params()
        self.offset.data.copy_(offset)
        self.coeff.data.copy_(coeff)

    def forward(self, dist):
        dist = dist.unsqueeze(-1) - self.offset
        return torch.exp(self.coeff * torch.pow(dist, 2))


rbf_class_mapping = {"gauss": GaussianSmearing, "expnorm": ExpNormalSmearing}


class ShiftedSoftplus(nn.Module):
    def __init__(self):
        super(ShiftedSoftplus, self).__init__()
        self.shift = torch.log(torch.tensor(2.0)).item()

    def forward(self, x):
        return F.softplus(x) - self.shift


class Swish(nn.Module):
    def __init__(self):
        super(Swish, self).__init__()

    def forward(self, x):
        return x * torch.sigmoid(x)


act_class_mapping = {"ssp": ShiftedSoftplus, "silu": nn.SiLU, "tanh": nn.Tanh, "sigmoid": nn.Sigmoid, "swish": Swish}


class Sphere(nn.Module):
    
    def __init__(self, l=2):
        super(Sphere, self).__init__()
        self.l = l
        
    def forward(self, edge_vec):
        edge_sh = self._spherical_harmonics(self.l, edge_vec[..., 0], edge_vec[..., 1], edge_vec[..., 2])
        return edge_sh
        
    @staticmethod
    def _spherical_harmonics(lmax: int, x: torch.Tensor, y: torch.Tensor, z: torch.Tensor) -> torch.Tensor:

        sh_1_0, sh_1_1, sh_1_2 = x, y, z
        
        if lmax == 1:
            return torch.stack([sh_1_0, sh_1_1, sh_1_2], dim=-1)

        sh_2_0 = math.sqrt(3.0) * x * z
        sh_2_1 = math.sqrt(3.0) * x * y
        y2 = y.pow(2)
        x2z2 = x.pow(2) + z.pow(2)
        sh_2_2 = y2 - 0.5 * x2z2
        sh_2_3 = math.sqrt(3.0) * y * z
        sh_2_4 = math.sqrt(3.0) / 2.0 * (z.pow(2) - x.pow(2))

        if lmax == 2:
            return torch.stack([sh_1_0, sh_1_1, sh_1_2, sh_2_0, sh_2_1, sh_2_2, sh_2_3, sh_2_4], dim=-1)


class VecLayerNorm(nn.Module):
    def __init__(self, hidden_channels, trainable, norm_type="max_min"):
        super(VecLayerNorm, self).__init__()
        
        self.hidden_channels = hidden_channels
        self.eps = 1e-12
        
        weight = torch.ones(self.hidden_channels)
        if trainable:
            self.register_parameter("weight", nn.Parameter(weight))
        else:
            self.register_buffer("weight", weight)
        
        if norm_type == "rms":
            self.norm = self.rms_norm
        elif norm_type == "max_min":
            self.norm = self.max_min_norm
        else:
            self.norm = self.none_norm
        
        self.reset_parameters()

    def reset_parameters(self):
        weight = torch.ones(self.hidden_channels)
        self.weight.data.copy_(weight)
    
    def none_norm(self, vec):
        return vec
        
    def rms_norm(self, vec):
        # vec: (num_atoms, 3 or 5, hidden_channels)
        dist = torch.norm(vec, dim=1)
        
        if (dist == 0).all():
            return torch.zeros_like(vec)
        
        dist = dist.clamp(min=self.eps)
        dist = torch.sqrt(torch.mean(dist ** 2, dim=-1))
        return vec / F.relu(dist).unsqueeze(-1).unsqueeze(-1)
    
    def max_min_norm(self, vec):
        # vec: (num_atoms, 3 or 5, hidden_channels)
        dist = torch.norm(vec, dim=1, keepdim=True)
        
        if (dist == 0).all():
            return torch.zeros_like(vec)
        
        dist = dist.clamp(min=self.eps)
        direct = vec / dist
        
        max_val, _ = torch.max(dist, dim=-1)
        min_val, _ = torch.min(dist, dim=-1)
        delta = (max_val - min_val).view(-1)
        delta = torch.where(delta == 0, torch.ones_like(delta), delta)
        dist = (dist - min_val.view(-1, 1, 1)) / delta.view(-1, 1, 1)
        
        return F.relu(dist) * direct

    def forward(self, vec):
        # vec: (num_atoms, 3 or 8, hidden_channels)
        if vec.shape[1] == 3:
            vec = self.norm(vec)
            return vec * self.weight.unsqueeze(0).unsqueeze(0)
        elif vec.shape[1] == 8:
            vec1, vec2 = torch.split(vec, [3, 5], dim=1)
            vec1 = self.norm(vec1)
            vec2 = self.norm(vec2)
            vec = torch.cat([vec1, vec2], dim=1)
            return vec * self.weight.unsqueeze(0).unsqueeze(0)
        else:
            raise ValueError("VecLayerNorm only support 3 or 8 channels")


class Distance(nn.Module):
    def __init__(self, cutoff, max_num_neighbors=32, loop=True):
        super(Distance, self).__init__()
        self.cutoff = cutoff
        self.max_num_neighbors = max_num_neighbors
        self.loop = loop

    def forward(self, pos, batch):
        edge_index = radius_graph(pos, r=self.cutoff, batch=batch, loop=self.loop, max_num_neighbors=self.max_num_neighbors)
        edge_vec = pos[edge_index[0]] - pos[edge_index[1]]

        if self.loop:
            mask = edge_index[0] != edge_index[1]
            edge_weight = torch.zeros(edge_vec.size(0), device=edge_vec.device)
            edge_weight[mask] = torch.norm(edge_vec[mask], dim=-1)
        else:
            edge_weight = torch.norm(edge_vec, dim=-1)

        return edge_index, edge_weight, edge_vec


class NeighborEmbedding(MessagePassing):
    def __init__(self, hidden_channels, num_rbf, cutoff, max_z=100):
        super(NeighborEmbedding, self).__init__(aggr="add")
        self.embedding = nn.Embedding(max_z, hidden_channels)
        self.distance_proj = nn.Linear(num_rbf, hidden_channels)
        self.combine = nn.Linear(hidden_channels * 2, hidden_channels)
        self.cutoff = CosineCutoff(cutoff)
        
        self.reset_parameters()
        
    def reset_parameters(self):
        self.embedding.reset_parameters()
        nn.init.xavier_uniform_(self.distance_proj.weight)
        nn.init.xavier_uniform_(self.combine.weight)
        self.distance_proj.bias.data.fill_(0)
        self.combine.bias.data.fill_(0)

    def forward(self, z, x, edge_index, edge_weight, edge_attr):
        # remove self loops
        mask = edge_index[0] != edge_index[1]
        if not mask.all():
            edge_index = edge_index[:, mask]
            edge_weight = edge_weight[mask]
            edge_attr = edge_attr[mask]

        C = self.cutoff(edge_weight)
        W = self.distance_proj(edge_attr) * C.view(-1, 1)

        x_neighbors = self.embedding(z)
        # propagate_type: (x: Tensor, W: Tensor)
        x_neighbors = self.propagate(edge_index, x=x_neighbors, W=W, size=None)
        x_neighbors = self.combine(torch.cat([x, x_neighbors], dim=1))
        return x_neighbors

    def message(self, x_j, W):
        return x_j * W

    
class EdgeEmbedding(MessagePassing):
    
    def __init__(self, num_rbf, hidden_channels):
        super(EdgeEmbedding, self).__init__(aggr=None)
        self.edge_proj = nn.Linear(num_rbf, hidden_channels)
        
        self.reset_parameters()
    
    def reset_parameters(self):
        nn.init.xavier_uniform_(self.edge_proj.weight)
        self.edge_proj.bias.data.fill_(0)
        
    def forward(self, edge_index, edge_attr, x):
        # propagate_type: (x: Tensor, edge_attr: Tensor)
        out = self.propagate(edge_index, x=x, edge_attr=edge_attr)
        return out
    
    def message(self, x_i, x_j, edge_attr):
        return (x_i + x_j) * self.edge_proj(edge_attr)
    
    def aggregate(self, features, index):
        # no aggregate
        return features