File size: 55,069 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
import argparse
import logging
import os
import sys
import json
import re
import numpy as np
import traceback
import pytorch_lightning as pl
import torch
import torch.nn as nn
from torch import Tensor
from torch.autograd import grad
from torch_geometric.data import Data
from torch_geometric.nn import MessagePassing
from torch_scatter import scatter
from torch.nn.functional import l1_loss, mse_loss
from torch.optim import AdamW
from torch.optim.lr_scheduler import ReduceLROnPlateau

from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers import CSVLogger, TensorBoardLogger
from pytorch_lightning.strategies import DDPStrategy
from pytorch_lightning.utilities import rank_zero_warn
from pytorch_lightning import LightningModule


from visnet import datasets, models, priors
from visnet.data import DataModule
from visnet.models import output_modules
from visnet.utils import LoadFromCheckpoint, LoadFromFile, number, save_argparse

from typing import Optional, Tuple , List
from metrics import calculate_mae
from visnet.models.utils import (
    CosineCutoff,
    Distance, 
    EdgeEmbedding,
    NeighborEmbedding, 
    Sphere, 
    VecLayerNorm,
    act_class_mapping, 
    rbf_class_mapping,
    ExpNormalSmearing, 
    GaussianSmearing
)

"""
Models
"""
class ViSNetBlock(nn.Module):

    def __init__(
        self,
        lmax=2,
        vecnorm_type='none',
        trainable_vecnorm=False,
        num_heads=8,
        num_layers=9,
        hidden_channels=256,
        num_rbf=32,
        rbf_type="expnorm",
        trainable_rbf=False,
        activation="silu",
        attn_activation="silu",
        max_z=100,
        cutoff=5.0,
        max_num_neighbors=32,
        vertex_type="HEDGE",  # Default to HEDGE
        use_substructures=True,
    ):
        super(ViSNetBlock, self).__init__()
        self.lmax = lmax
        self.vecnorm_type = vecnorm_type
        self.trainable_vecnorm = trainable_vecnorm
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.hidden_channels = hidden_channels
        self.num_rbf = num_rbf
        self.rbf_type = rbf_type
        self.trainable_rbf = trainable_rbf
        self.activation = activation
        self.attn_activation = attn_activation
        self.max_z = max_z
        self.cutoff = cutoff
        self.max_num_neighbors = max_num_neighbors
        self.use_substructures = use_substructures
    
        self.embedding = nn.Embedding(max_z, hidden_channels)
        self.distance = Distance(cutoff, max_num_neighbors=max_num_neighbors, loop=True)
        self.sphere = Sphere(l=lmax)
        self.distance_expansion = rbf_class_mapping[rbf_type](cutoff, num_rbf, trainable_rbf)
        self.neighbor_embedding = NeighborEmbedding(hidden_channels, num_rbf, cutoff, max_z).jittable()
        self.edge_embedding = EdgeEmbedding(num_rbf, hidden_channels).jittable()

        # Add substructure pooling if enabled
        if self.use_substructures:
            self.substructure_pooling = nn.Sequential(
                nn.Linear(hidden_channels, hidden_channels),
                act_class_mapping[activation](),
                nn.Linear(hidden_channels, hidden_channels)
            )

        self.vis_mp_layers = nn.ModuleList()
        vis_mp_kwargs = dict(
            num_heads=num_heads, 
            hidden_channels=hidden_channels, 
            activation=activation, 
            attn_activation=attn_activation, 
            cutoff=cutoff, 
            vecnorm_type=vecnorm_type, 
            trainable_vecnorm=trainable_vecnorm
        )
        vis_mp_class = VIS_MP_MAP.get(vertex_type, HEDGE_MP)  # Default to HEDGE_MP
        for _ in range(num_layers - 1):
            layer = vis_mp_class(last_layer=False, **vis_mp_kwargs).jittable()
            self.vis_mp_layers.append(layer)
        self.vis_mp_layers.append(vis_mp_class(last_layer=True, **vis_mp_kwargs).jittable())

        self.out_norm = nn.LayerNorm(hidden_channels)
        self.vec_out_norm = VecLayerNorm(hidden_channels, trainable=trainable_vecnorm, norm_type=vecnorm_type)
        self.reset_parameters()

    def reset_parameters(self):
        self.embedding.reset_parameters()
        self.distance_expansion.reset_parameters()
        self.neighbor_embedding.reset_parameters()
        self.edge_embedding.reset_parameters()
        
        if self.use_substructures:
            for layer in self.substructure_pooling:
                if hasattr(layer, 'reset_parameters'):
                    layer.reset_parameters()
                    
        for layer in self.vis_mp_layers:
            layer.reset_parameters()
        self.out_norm.reset_parameters()
        self.vec_out_norm.reset_parameters()
        
    def forward(self, data: Data) -> Tuple[Tensor, Tensor]:
        
        z, pos, batch = data.z, data.pos, data.batch
        
        # Embedding Layers
        x = self.embedding(z)
        edge_index, edge_weight, edge_vec = self.distance(pos, batch)
        edge_attr = self.distance_expansion(edge_weight)
        mask = edge_index[0] != edge_index[1]
        edge_vec[mask] = edge_vec[mask] / torch.norm(edge_vec[mask], dim=1).unsqueeze(1)
        edge_vec = self.sphere(edge_vec)
        x = self.neighbor_embedding(z, x, edge_index, edge_weight, edge_attr)
        vec = torch.zeros(x.size(0), ((self.lmax + 1) ** 2) - 1, x.size(1), device=x.device)
        edge_attr = self.edge_embedding(edge_index, edge_attr, x)
        
        # Store intermediate node representations for substructure identification
        node_representations = []
        
        # HEDGE-MP Layers with Geometry-Enhanced Directional Attention
        for attn in self.vis_mp_layers[:-1]:
            dx, dvec, dedge_attr = attn(x, vec, edge_index, edge_weight, edge_attr, edge_vec)
            x = x + dx
            vec = vec + dvec
            edge_attr = edge_attr + dedge_attr
            node_representations.append(x)

        dx, dvec, _ = self.vis_mp_layers[-1](x, vec, edge_index, edge_weight, edge_attr, edge_vec)
        x = x + dx
        vec = vec + dvec
        node_representations.append(x)
        
        # Apply hierarchical substructure representation if enabled
        if self.use_substructures:
            # Identify substructures based on node similarity patterns
            # This is a simplified approach - in a full implementation we would use
            # more sophisticated substructure detection
            
            # Stack all node representations
            node_history = torch.stack(node_representations, dim=1)  # [num_nodes, num_layers, hidden_dim]
            
            # Compute substructure embeddings by pooling across layers
            substructure_embeddings = self.substructure_pooling(
                node_history.mean(dim=1)  # Average across layers
            )
            
            # Combine with final node representations
            x = x + substructure_embeddings
        
        x = self.out_norm(x)
        vec = self.vec_out_norm(vec)

        return x, vec
    
class ViS_MP(MessagePassing):
    def __init__(
        self,
        num_heads,
        hidden_channels,
        activation,
        attn_activation,
        cutoff,
        vecnorm_type,
        trainable_vecnorm,
        last_layer=False,
    ):
        super(ViS_MP, self).__init__(aggr="add", node_dim=0)
        assert hidden_channels % num_heads == 0, (
            f"The number of hidden channels ({hidden_channels}) "
            f"must be evenly divisible by the number of "
            f"attention heads ({num_heads})"
        )

        self.num_heads = num_heads
        self.hidden_channels = hidden_channels
        self.head_dim = hidden_channels // num_heads
        self.last_layer = last_layer

        self.layernorm = nn.LayerNorm(hidden_channels)
        self.vec_layernorm = VecLayerNorm(hidden_channels, trainable=trainable_vecnorm, norm_type=vecnorm_type)
        
        self.act = act_class_mapping[activation]()
        self.attn_activation = act_class_mapping[attn_activation]()
        
        self.cutoff = CosineCutoff(cutoff)

        self.vec_proj = nn.Linear(hidden_channels, hidden_channels * 3, bias=False)
        
        self.q_proj = nn.Linear(hidden_channels, hidden_channels)
        self.k_proj = nn.Linear(hidden_channels, hidden_channels)
        self.v_proj = nn.Linear(hidden_channels, hidden_channels)
        self.dk_proj = nn.Linear(hidden_channels, hidden_channels)
        self.dv_proj = nn.Linear(hidden_channels, hidden_channels)
        
        self.s_proj = nn.Linear(hidden_channels, hidden_channels * 2)
        if not self.last_layer:
            self.f_proj = nn.Linear(hidden_channels, hidden_channels)
            self.w_src_proj = nn.Linear(hidden_channels, hidden_channels, bias=False)
            self.w_trg_proj = nn.Linear(hidden_channels, hidden_channels, bias=False)

        self.o_proj = nn.Linear(hidden_channels, hidden_channels * 3)
        
        self.reset_parameters()
        
    @staticmethod
    def vector_rejection(vec, d_ij):
        vec_proj = (vec * d_ij.unsqueeze(2)).sum(dim=1, keepdim=True)
        return vec - vec_proj * d_ij.unsqueeze(2)

    def reset_parameters(self):
        self.layernorm.reset_parameters()
        self.vec_layernorm.reset_parameters()
        nn.init.xavier_uniform_(self.q_proj.weight)
        self.q_proj.bias.data.fill_(0)
        nn.init.xavier_uniform_(self.k_proj.weight)
        self.k_proj.bias.data.fill_(0)
        nn.init.xavier_uniform_(self.v_proj.weight)
        self.v_proj.bias.data.fill_(0)
        nn.init.xavier_uniform_(self.o_proj.weight)
        self.o_proj.bias.data.fill_(0)
        nn.init.xavier_uniform_(self.s_proj.weight)
        self.s_proj.bias.data.fill_(0)
        
        if not self.last_layer:
            nn.init.xavier_uniform_(self.f_proj.weight)
            self.f_proj.bias.data.fill_(0)
            nn.init.xavier_uniform_(self.w_src_proj.weight)
            nn.init.xavier_uniform_(self.w_trg_proj.weight)

        nn.init.xavier_uniform_(self.vec_proj.weight)
        nn.init.xavier_uniform_(self.dk_proj.weight)
        self.dk_proj.bias.data.fill_(0)
        nn.init.xavier_uniform_(self.dv_proj.weight)
        self.dv_proj.bias.data.fill_(0)

        
    def forward(self, x, vec, edge_index, r_ij, f_ij, d_ij):
        x = self.layernorm(x)
        vec = self.vec_layernorm(vec)
        
        q = self.q_proj(x).reshape(-1, self.num_heads, self.head_dim)
        k = self.k_proj(x).reshape(-1, self.num_heads, self.head_dim)
        v = self.v_proj(x).reshape(-1, self.num_heads, self.head_dim)
        dk = self.act(self.dk_proj(f_ij)).reshape(-1, self.num_heads, self.head_dim)
        dv = self.act(self.dv_proj(f_ij)).reshape(-1, self.num_heads, self.head_dim)
        
        vec1, vec2, vec3 = torch.split(self.vec_proj(vec), self.hidden_channels, dim=-1)
        vec_dot = (vec1 * vec2).sum(dim=1)
        
        # propagate_type: (q: Tensor, k: Tensor, v: Tensor, dk: Tensor, dv: Tensor, vec: Tensor, r_ij: Tensor, d_ij: Tensor)
        x, vec_out = self.propagate(
            edge_index,
            q=q,
            k=k,
            v=v,
            dk=dk,
            dv=dv,
            vec=vec,
            r_ij=r_ij,
            d_ij=d_ij,
            size=None,
        )
        
        o1, o2, o3 = torch.split(self.o_proj(x), self.hidden_channels, dim=1)
        dx = vec_dot * o2 + o3
        dvec = vec3 * o1.unsqueeze(1) + vec_out
        if not self.last_layer:
            # edge_updater_type: (vec: Tensor, d_ij: Tensor, f_ij: Tensor)
            df_ij = self.edge_updater(edge_index, vec=vec, d_ij=d_ij, f_ij=f_ij)
            return dx, dvec, df_ij
        else:
            return dx, dvec, None

    def message(self, q_i, k_j, v_j, vec_j, dk, dv, r_ij, d_ij):

        attn = (q_i * k_j * dk).sum(dim=-1)
        attn = self.attn_activation(attn) * self.cutoff(r_ij).unsqueeze(1)
        
        v_j = v_j * dv
        v_j = (v_j * attn.unsqueeze(2)).view(-1, self.hidden_channels)

        s1, s2 = torch.split(self.act(self.s_proj(v_j)), self.hidden_channels, dim=1)
        vec_j = vec_j * s1.unsqueeze(1) + s2.unsqueeze(1) * d_ij.unsqueeze(2)
    
        return v_j, vec_j
    
    def edge_update(self, vec_i, vec_j, d_ij, f_ij):
        w1 = self.vector_rejection(self.w_trg_proj(vec_i), d_ij)
        w2 = self.vector_rejection(self.w_src_proj(vec_j), -d_ij)
        w_dot = (w1 * w2).sum(dim=1)
        df_ij = self.act(self.f_proj(f_ij)) * w_dot
        return df_ij

    def aggregate(
        self,
        features: Tuple[torch.Tensor, torch.Tensor],
        index: torch.Tensor,
        ptr: Optional[torch.Tensor],
        dim_size: Optional[int],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        x, vec = features
        x = scatter(x, index, dim=self.node_dim, dim_size=dim_size)
        vec = scatter(vec, index, dim=self.node_dim, dim_size=dim_size)
        return x, vec

    def update(self, inputs: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
        return inputs
    
class ViS_MP_Vertex_Edge(ViS_MP):
    
    def __init__(
        self, 
        num_heads, 
        hidden_channels, 
        activation, 
        attn_activation, 
        cutoff, 
        vecnorm_type, 
        trainable_vecnorm, 
        last_layer=False
    ):
        super().__init__(num_heads, hidden_channels, activation, attn_activation, cutoff, vecnorm_type, trainable_vecnorm, last_layer)
        
        if not self.last_layer:
            self.f_proj = nn.Linear(hidden_channels, hidden_channels * 2)
            self.t_src_proj = nn.Linear(hidden_channels, hidden_channels, bias=False)
            self.t_trg_proj = nn.Linear(hidden_channels, hidden_channels, bias=False)
            
    def edge_update(self, vec_i, vec_j, d_ij, f_ij):

        w1 = self.vector_rejection(self.w_trg_proj(vec_i), d_ij)
        w2 = self.vector_rejection(self.w_src_proj(vec_j), -d_ij)
        w_dot = (w1 * w2).sum(dim=1)
        
        t1 = self.vector_rejection(self.t_trg_proj(vec_i), d_ij)
        t2 = self.vector_rejection(self.t_src_proj(vec_i), -d_ij)
        t_dot = (t1 * t2).sum(dim=1)
        
        f1, f2 = torch.split(self.act(self.f_proj(f_ij)), self.hidden_channels, dim=-1)

        return f1 * w_dot + f2 * t_dot

    def forward(self, x, vec, edge_index, r_ij, f_ij, d_ij):
        x = self.layernorm(x)
        vec = self.vec_layernorm(vec)
        
        q = self.q_proj(x).reshape(-1, self.num_heads, self.head_dim)
        k = self.k_proj(x).reshape(-1, self.num_heads, self.head_dim)
        v = self.v_proj(x).reshape(-1, self.num_heads, self.head_dim)
        dk = self.act(self.dk_proj(f_ij)).reshape(-1, self.num_heads, self.head_dim)
        dv = self.act(self.dv_proj(f_ij)).reshape(-1, self.num_heads, self.head_dim)
        
        vec1, vec2, vec3 = torch.split(self.vec_proj(vec), self.hidden_channels, dim=-1)
        vec_dot = (vec1 * vec2).sum(dim=1)
        
        # propagate_type: (q: Tensor, k: Tensor, v: Tensor, dk: Tensor, dv: Tensor, vec: Tensor, r_ij: Tensor, d_ij: Tensor)
        x, vec_out = self.propagate(
            edge_index,
            q=q,
            k=k,
            v=v,
            dk=dk,
            dv=dv,
            vec=vec,
            r_ij=r_ij,
            d_ij=d_ij,
            size=None,
        )
        
        o1, o2, o3 = torch.split(self.o_proj(x), self.hidden_channels, dim=1)
        dx = vec_dot * o2 + o3
        dvec = vec3 * o1.unsqueeze(1) + vec_out
        if not self.last_layer:
            # edge_updater_type: (vec: Tensor, d_ij: Tensor, f_ij: Tensor)
            df_ij = self.edge_updater(edge_index, vec=vec, d_ij=d_ij, f_ij=f_ij)
            return dx, dvec, df_ij
        else:
            return dx, dvec, None
    
class ViS_MP_Vertex_Node(ViS_MP):
    def __init__(
        self,
        num_heads,
        hidden_channels,
        activation,
        attn_activation,
        cutoff,
        vecnorm_type,
        trainable_vecnorm,
        last_layer=False,
    ):
        super().__init__(num_heads, hidden_channels, activation, attn_activation, cutoff, vecnorm_type, trainable_vecnorm, last_layer)

        self.t_src_proj = nn.Linear(hidden_channels, hidden_channels, bias=False)
        self.t_trg_proj = nn.Linear(hidden_channels, hidden_channels, bias=False)
        
        self.o_proj = nn.Linear(hidden_channels, hidden_channels * 4)
        
    def forward(self, x, vec, edge_index, r_ij, f_ij, d_ij):
        x = self.layernorm(x)
        vec = self.vec_layernorm(vec)
        
        q = self.q_proj(x).reshape(-1, self.num_heads, self.head_dim)
        k = self.k_proj(x).reshape(-1, self.num_heads, self.head_dim)
        v = self.v_proj(x).reshape(-1, self.num_heads, self.head_dim)
        dk = self.act(self.dk_proj(f_ij)).reshape(-1, self.num_heads, self.head_dim)
        dv = self.act(self.dv_proj(f_ij)).reshape(-1, self.num_heads, self.head_dim)
        
        vec1, vec2, vec3 = torch.split(self.vec_proj(vec), self.hidden_channels, dim=-1)
        vec_dot = (vec1 * vec2).sum(dim=1)
        
        # propagate_type: (q: Tensor, k: Tensor, v: Tensor, dk: Tensor, dv: Tensor, vec: Tensor, r_ij: Tensor, d_ij: Tensor)
        x, vec_out, t_dot = self.propagate(
            edge_index,
            q=q,
            k=k,
            v=v,
            dk=dk,
            dv=dv,
            vec=vec,
            r_ij=r_ij,
            d_ij=d_ij,
            size=None,
        )
        
        o1, o2, o3, o4 = torch.split(self.o_proj(x), self.hidden_channels, dim=1)
        dx = vec_dot * o2 + t_dot * o3 + o4
        dvec = vec3 * o1.unsqueeze(1) + vec_out
        if not self.last_layer:
            # edge_updater_type: (vec: Tensor, d_ij: Tensor, f_ij: Tensor)
            df_ij = self.edge_updater(edge_index, vec=vec, d_ij=d_ij, f_ij=f_ij)
            return dx, dvec, df_ij
        else:
            return dx, dvec, None

    def edge_update(self, vec_i, vec_j, d_ij, f_ij):
        w1 = self.vector_rejection(self.w_trg_proj(vec_i), d_ij)
        w2 = self.vector_rejection(self.w_src_proj(vec_j), -d_ij)
        w_dot = (w1 * w2).sum(dim=1)
        df_ij = self.act(self.f_proj(f_ij)) * w_dot
        return df_ij

    def message(self, q_i, k_j, v_j, vec_i, vec_j, dk, dv, r_ij, d_ij):

        attn = (q_i * k_j * dk).sum(dim=-1)
        attn = self.attn_activation(attn) * self.cutoff(r_ij).unsqueeze(1)
        
        v_j = v_j * dv
        v_j = (v_j * attn.unsqueeze(2)).view(-1, self.hidden_channels)
        
        t1 = self.vector_rejection(self.t_trg_proj(vec_i), d_ij)
        t2 = self.vector_rejection(self.t_src_proj(vec_i), -d_ij)
        t_dot = (t1 * t2).sum(dim=1)

        s1, s2 = torch.split(self.act(self.s_proj(v_j)), self.hidden_channels, dim=1)
        vec_j = vec_j * s1.unsqueeze(1) + s2.unsqueeze(1) * d_ij.unsqueeze(2)
    
        return v_j, vec_j, t_dot

    def aggregate(
        self,
        features: Tuple[torch.Tensor, torch.Tensor],
        index: torch.Tensor,
        ptr: Optional[torch.Tensor],
        dim_size: Optional[int],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        x, vec, t_dot = features
        x = scatter(x, index, dim=self.node_dim, dim_size=dim_size)
        vec = scatter(vec, index, dim=self.node_dim, dim_size=dim_size)
        t_dot = scatter(t_dot, index, dim=self.node_dim, dim_size=dim_size)
        return x, vec, t_dot
    
class HEDGE_MP(MessagePassing):
    """
    HEDGE-Net Message Passing with Geometry-Enhanced Directional Attention (GEDA)
    Implements hierarchical geometric aggregation and improved anisotropic message passing
    """
    def __init__(
        self,
        num_heads,
        hidden_channels,
        activation,
        attn_activation,
        cutoff,
        vecnorm_type,
        trainable_vecnorm,
        last_layer=False,
    ):
        super(HEDGE_MP, self).__init__(aggr="add", node_dim=0)
        assert hidden_channels % num_heads == 0, (
            f"The number of hidden channels ({hidden_channels}) "
            f"must be evenly divisible by the number of "
            f"attention heads ({num_heads})"
        )

        self.num_heads = num_heads
        self.hidden_channels = hidden_channels
        self.head_dim = hidden_channels // num_heads
        self.last_layer = last_layer

        self.layernorm = nn.LayerNorm(hidden_channels)
        self.vec_layernorm = VecLayerNorm(hidden_channels, trainable=trainable_vecnorm, norm_type=vecnorm_type)
        
        self.act = act_class_mapping[activation]()
        self.attn_activation = act_class_mapping[attn_activation]()
        
        self.cutoff = CosineCutoff(cutoff)

        # Vector projections
        self.vec_proj = nn.Linear(hidden_channels, hidden_channels * 3, bias=False)
        
        # Attention projections
        self.q_proj = nn.Linear(hidden_channels, hidden_channels)
        self.k_proj = nn.Linear(hidden_channels, hidden_channels)
        self.v_proj = nn.Linear(hidden_channels, hidden_channels)
        
        # Directional attention components
        self.dk_proj = nn.Linear(hidden_channels, hidden_channels)
        self.dv_proj = nn.Linear(hidden_channels, hidden_channels)
        
        # Angular feature projection
        self.angle_proj = nn.Linear(1, self.head_dim)
        
        # Substructure identification
        self.substructure_attn = nn.Linear(hidden_channels, 1)
        
        # Output projections
        self.s_proj = nn.Linear(hidden_channels, hidden_channels * 2)
        self.o_proj = nn.Linear(hidden_channels, hidden_channels * 3)
        
        if not self.last_layer:
            self.f_proj = nn.Linear(hidden_channels, hidden_channels)
            self.w_src_proj = nn.Linear(hidden_channels, hidden_channels, bias=False)
            self.w_trg_proj = nn.Linear(hidden_channels, hidden_channels, bias=False)
        
        self.reset_parameters()
        
    @staticmethod
    def vector_rejection(vec, d_ij):
        vec_proj = (vec * d_ij.unsqueeze(2)).sum(dim=1, keepdim=True)
        return vec - vec_proj * d_ij.unsqueeze(2)
    
    @staticmethod
    def compute_angle(d_ij, d_ik):
        """Compute angle between two direction vectors"""
        # Normalize vectors
        d_ij_norm = d_ij / (torch.norm(d_ij, dim=1, keepdim=True) + 1e-10)
        d_ik_norm = d_ik / (torch.norm(d_ik, dim=1, keepdim=True) + 1e-10)
        
        # Compute cosine of angle
        cos_angle = torch.sum(d_ij_norm * d_ik_norm, dim=1, keepdim=True)
        # Clamp to avoid numerical issues
        cos_angle = torch.clamp(cos_angle, -1.0, 1.0)
        
        return cos_angle

    def reset_parameters(self):
        self.layernorm.reset_parameters()
        self.vec_layernorm.reset_parameters()
        
        nn.init.xavier_uniform_(self.q_proj.weight)
        self.q_proj.bias.data.fill_(0)
        nn.init.xavier_uniform_(self.k_proj.weight)
        self.k_proj.bias.data.fill_(0)
        nn.init.xavier_uniform_(self.v_proj.weight)
        self.v_proj.bias.data.fill_(0)
        
        nn.init.xavier_uniform_(self.o_proj.weight)
        self.o_proj.bias.data.fill_(0)
        nn.init.xavier_uniform_(self.s_proj.weight)
        self.s_proj.bias.data.fill_(0)
        
        nn.init.xavier_uniform_(self.angle_proj.weight)
        self.angle_proj.bias.data.fill_(0)
        
        nn.init.xavier_uniform_(self.substructure_attn.weight)
        self.substructure_attn.bias.data.fill_(0)
        
        if not self.last_layer:
            nn.init.xavier_uniform_(self.f_proj.weight)
            self.f_proj.bias.data.fill_(0)
            nn.init.xavier_uniform_(self.w_src_proj.weight)
            nn.init.xavier_uniform_(self.w_trg_proj.weight)

        nn.init.xavier_uniform_(self.vec_proj.weight)
        nn.init.xavier_uniform_(self.dk_proj.weight)
        self.dk_proj.bias.data.fill_(0)
        nn.init.xavier_uniform_(self.dv_proj.weight)
        self.dv_proj.bias.data.fill_(0)
        
    def forward(self, x, vec, edge_index, r_ij, f_ij, d_ij):
        x = self.layernorm(x)
        vec = self.vec_layernorm(vec)
        
        # Compute node features
        q = self.q_proj(x).reshape(-1, self.num_heads, self.head_dim)
        k = self.k_proj(x).reshape(-1, self.num_heads, self.head_dim)
        v = self.v_proj(x).reshape(-1, self.num_heads, self.head_dim)
        
        # Compute directional features
        dk = self.act(self.dk_proj(f_ij)).reshape(-1, self.num_heads, self.head_dim)
        dv = self.act(self.dv_proj(f_ij)).reshape(-1, self.num_heads, self.head_dim)
        
        # Compute vector projections
        vec1, vec2, vec3 = torch.split(self.vec_proj(vec), self.hidden_channels, dim=-1)
        vec_dot = (vec1 * vec2).sum(dim=1)
        
        # Compute substructure attention weights
        substructure_weights = torch.sigmoid(self.substructure_attn(x))
        
        # Propagate messages with GEDA mechanism
        x, vec_out, substructure_embeddings = self.propagate(
            edge_index,
            q=q,
            k=k,
            v=v,
            dk=dk,
            dv=dv,
            vec=vec,
            r_ij=r_ij,
            d_ij=d_ij,
            x=x,
            substructure_weights=substructure_weights,
            size=None,
        )
        
        # Combine with substructure information
        o1, o2, o3 = torch.split(self.o_proj(x), self.hidden_channels, dim=1)
        dx = vec_dot * o2 + o3 + substructure_embeddings
        dvec = vec3 * o1.unsqueeze(1) + vec_out
        
        if not self.last_layer:
            # Update edge features
            df_ij = self.edge_updater(edge_index, vec=vec, d_ij=d_ij, f_ij=f_ij)
            return dx, dvec, df_ij
        else:
            return dx, dvec, None

    def message(self, q_i, k_j, v_j, vec_j, dk, dv, r_ij, d_ij, edge_index_i, edge_index_j, x_j):
        # Basic attention mechanism
        attn = (q_i * k_j * dk).sum(dim=-1)
        
        # Compute angular features for triplets
        # For each target node i, we consider pairs of source nodes j and k
        # This is a simplified version that considers only direct neighbors
        # In a full implementation, we would compute this for all triplets
        
        # Get unique target nodes
        unique_i = torch.unique(edge_index_i)
        
        # Initialize angular features
        angular_features = torch.zeros_like(attn)
        
        # For each target node, compute angles between its neighbors
        for i in unique_i:
            # Get indices of edges pointing to node i
            mask_i = edge_index_i == i
            indices_i = torch.where(mask_i)[0]
            
            if indices_i.size(0) > 1:  # Need at least 2 neighbors to form an angle
                # Get source nodes j for these edges
                sources_j = edge_index_j[indices_i]
                
                # Get direction vectors from i to these sources
                directions = d_ij[indices_i]
                
                # Compute pairwise angles between direction vectors
                for idx1, j_idx in enumerate(indices_i):
                    for idx2, k_idx in enumerate(indices_i[idx1+1:], idx1+1):
                        # Compute angle between directions
                        angle = self.compute_angle(directions[idx1], directions[idx2])
                        
                        # Project angle to feature space
                        angle_feature = self.angle_proj(angle)
                        
                        # Add to both edges' features
                        for head_idx in range(self.num_heads):
                            angular_features[j_idx, head_idx] += angle_feature[0, head_idx]
                            angular_features[k_idx, head_idx] += angle_feature[0, head_idx]
        
        # Combine with directional attention
        attn = attn + angular_features
        attn = self.attn_activation(attn) * self.cutoff(r_ij).unsqueeze(1)
        
        # Apply attention to values
        v_j = v_j * dv
        v_j = (v_j * attn.unsqueeze(2)).view(-1, self.hidden_channels)

        # Transform vectors
        s1, s2 = torch.split(self.act(self.s_proj(v_j)), self.hidden_channels, dim=1)
        vec_j = vec_j * s1.unsqueeze(1) + s2.unsqueeze(1) * d_ij.unsqueeze(2)
        
        # Compute substructure embeddings based on attention patterns
        # This is a simplified approach - in a full implementation we would use
        # more sophisticated substructure detection
        substructure_embedding = v_j * attn.mean(dim=1, keepdim=True).view(-1, 1)
    
        return v_j, vec_j, substructure_embedding
    
    def edge_update(self, vec_i, vec_j, d_ij, f_ij):
        w1 = self.vector_rejection(self.w_trg_proj(vec_i), d_ij)
        w2 = self.vector_rejection(self.w_src_proj(vec_j), -d_ij)
        w_dot = (w1 * w2).sum(dim=1)
        df_ij = self.act(self.f_proj(f_ij)) * w_dot
        return df_ij

    def aggregate(
        self,
        features: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
        index: torch.Tensor,
        ptr: Optional[torch.Tensor],
        dim_size: Optional[int],
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        x, vec, substructure = features
        x = scatter(x, index, dim=self.node_dim, dim_size=dim_size)
        vec = scatter(vec, index, dim=self.node_dim, dim_size=dim_size)
        substructure = scatter(substructure, index, dim=self.node_dim, dim_size=dim_size)
        return x, vec, substructure

    def update(self, inputs: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        return inputs

VIS_MP_MAP = {'Node': ViS_MP_Vertex_Node, 'Edge': ViS_MP_Vertex_Edge, 'None': ViS_MP, 'HEDGE': HEDGE_MP}

def create_model(args, prior_model=None, mean=None, std=None):
    visnet_args = dict(
        lmax=args["lmax"],
        vecnorm_type=args["vecnorm_type"],
        trainable_vecnorm=args["trainable_vecnorm"],
        num_heads=args["num_heads"],
        num_layers=args["num_layers"],
        hidden_channels=args["embedding_dimension"],
        num_rbf=args["num_rbf"],
        rbf_type=args["rbf_type"],
        trainable_rbf=args["trainable_rbf"],
        activation=args["activation"],
        attn_activation=args["attn_activation"],
        max_z=args["max_z"],
        cutoff=args["cutoff"],
        max_num_neighbors=args["max_num_neighbors"],
        vertex_type=args["vertex_type"],
    )

    # representation network
    if args["model"] == "ViSNetBlock":
        representation_model = ViSNetBlock(**visnet_args)
    else:
        raise ValueError(f"Unknown model {args['model']}.")
    
    # prior model
    if args["prior_model"] and prior_model is None:
        assert "prior_args" in args, (
            f"Requested prior model {args['prior_model']} but the "
            f'arguments are lacking the key "prior_args".'
        )
        assert hasattr(priors, args["prior_model"]), (
            f'Unknown prior model {args["prior_model"]}. '
            f'Available models are {", ".join(priors.__all__)}'
        )
        # instantiate prior model if it was not passed to create_model (i.e. when loading a model)
        prior_model = getattr(priors, args["prior_model"])(**args["prior_args"])

    # create output network
    output_prefix = "Equivariant"
    output_model = getattr(output_modules, output_prefix + args["output_model"])(args["embedding_dimension"], args["activation"])

    model = ViSNet(
        representation_model,
        output_model,
        prior_model=prior_model,
        reduce_op=args["reduce_op"],
        mean=mean,
        std=std,
        derivative=args["derivative"],
    )
    return model


def load_model(filepath, args=None, device="cpu", **kwargs):
    ckpt = torch.load(filepath, map_location="cpu")
    if args is None:
        args = ckpt["hyper_parameters"]

    for key, value in kwargs.items():
        if not key in args:
            rank_zero_warn(f"Unknown hyperparameter: {key}={value}")
        args[key] = value

    model = create_model(args)
    state_dict = {re.sub(r"^model\.", "", k): v for k, v in ckpt["state_dict"].items()}
    model.load_state_dict(state_dict)
    
    return model.to(device)


class ViSNet(nn.Module):
    def __init__(
        self,
        representation_model,
        output_model,
        prior_model=None,
        reduce_op="add",
        mean=None,
        std=None,
        derivative=False,
    ):
        super(ViSNet, self).__init__()
        self.representation_model = representation_model
        self.output_model = output_model

        self.prior_model = prior_model
        if not output_model.allow_prior_model and prior_model is not None:
            self.prior_model = None
            rank_zero_warn(
                "Prior model was given but the output model does "
                "not allow prior models. Dropping the prior model."
            )

        self.reduce_op = reduce_op
        self.derivative = derivative

        mean = torch.scalar_tensor(0) if mean is None else mean
        self.register_buffer("mean", mean)
        std = torch.scalar_tensor(1) if std is None else std
        self.register_buffer("std", std)

        self.reset_parameters()

    def reset_parameters(self):
        self.representation_model.reset_parameters()
        self.output_model.reset_parameters()
        if self.prior_model is not None:
            self.prior_model.reset_parameters()

    def forward(self, data: Data) -> Tuple[Tensor, Optional[Tensor]]:
        
        if self.derivative:
            data.pos.requires_grad_(True)

        x, v = self.representation_model(data)
        x = self.output_model.pre_reduce(x, v, data.z, data.pos, data.batch)
        x = x * self.std

        if self.prior_model is not None:
            x = self.prior_model(x, data.z)

        out = scatter(x, data.batch, dim=0, reduce=self.reduce_op)
        out = self.output_model.post_reduce(out)
        
        out = out + self.mean

        # compute gradients with respect to coordinates
        if self.derivative:
            grad_outputs: List[Optional[torch.Tensor]] = [torch.ones_like(out)]
            dy = grad(
                [out],
                [data.pos],
                grad_outputs=grad_outputs,
                create_graph=True,
                retain_graph=True,
            )[0]
            if dy is None:
                raise RuntimeError("Autograd returned None for the force prediction.")
            return out, -dy
        return out, None
    
class LNNP(LightningModule):
    def __init__(self, hparams, prior_model=None, mean=None, std=None):
        super(LNNP, self).__init__()

        self.save_hyperparameters(hparams)

        if self.hparams.load_model:
            self.model = load_model(self.hparams.load_model, args=self.hparams)
        else:
            self.model = create_model(self.hparams, prior_model, mean, std)

        self._reset_losses_dict()
        self._reset_ema_dict()
        self._reset_inference_results()

    def configure_optimizers(self):
        optimizer = AdamW(
            self.model.parameters(),
            lr=self.hparams.lr,
            weight_decay=self.hparams.weight_decay,
        )
        scheduler = ReduceLROnPlateau(
            optimizer,
            "min",
            factor=self.hparams.lr_factor,
            patience=self.hparams.lr_patience,
            min_lr=self.hparams.lr_min,
        )
        lr_scheduler = {
            "scheduler": scheduler,
            "monitor": "val_loss",
            "interval": "epoch",
            "frequency": 1,
        }
        return [optimizer], [lr_scheduler]

    def forward(self, data):
        return self.model(data)

    def training_step(self, batch, batch_idx):
        loss_fn = mse_loss if self.hparams.loss_type == 'MSE' else l1_loss
        
        return self.step(batch, loss_fn, "train")

    def validation_step(self, batch, batch_idx, *args):
        if len(args) == 0 or (len(args) > 0 and args[0] == 0):
            # validation step
            return self.step(batch, mse_loss, "val")
        # test step
        return self.step(batch, l1_loss, "test")

    def test_step(self, batch, batch_idx):
        return self.step(batch, l1_loss, "test")

    def step(self, batch, loss_fn, stage):
        with torch.set_grad_enabled(stage == "train" or self.hparams.derivative):
            pred, deriv = self(batch)
        if stage == "test":
            self.inference_results['y_pred'].append(pred.squeeze(-1).detach().cpu())
            self.inference_results['y_true'].append(batch.y.squeeze(-1).detach().cpu())
            if self.hparams.derivative:
                self.inference_results['dy_pred'].append(deriv.squeeze(-1).detach().cpu())
                self.inference_results['dy_true'].append(batch.dy.squeeze(-1).detach().cpu())

        loss_y, loss_dy = 0, 0
        if self.hparams.derivative:
            if "y" not in batch:
                deriv = deriv + pred.sum() * 0

            loss_dy = loss_fn(deriv, batch.dy)
            
            if stage in ["train", "val"] and self.hparams.loss_scale_dy < 1:
                if self.ema[stage + "_dy"] is None:
                    self.ema[stage + "_dy"] = loss_dy.detach()
                # apply exponential smoothing over batches to dy
                loss_dy = (
                    self.hparams.loss_scale_dy * loss_dy
                    + (1 - self.hparams.loss_scale_dy) * self.ema[stage + "_dy"]
                )
                self.ema[stage + "_dy"] = loss_dy.detach()

            if self.hparams.force_weight > 0:
                self.losses[stage + "_dy"].append(loss_dy.detach())

        if "y" in batch:
            if batch.y.ndim == 1:
                batch.y = batch.y.unsqueeze(1)

            loss_y = loss_fn(pred, batch.y)
            
            if stage in ["train", "val"] and self.hparams.loss_scale_y < 1:
                if self.ema[stage + "_y"] is None:
                    self.ema[stage + "_y"] = loss_y.detach()
                # apply exponential smoothing over batches to y
                loss_y = (
                    self.hparams.loss_scale_y * loss_y
                    + (1 - self.hparams.loss_scale_y) * self.ema[stage + "_y"]
                )
                self.ema[stage + "_y"] = loss_y.detach()
            
            if self.hparams.energy_weight > 0:
                self.losses[stage + "_y"].append(loss_y.detach())

        loss = loss_y * self.hparams.energy_weight + loss_dy * self.hparams.force_weight
        
        self.losses[stage].append(loss.detach())
        
        return loss

    def optimizer_step(self, *args, **kwargs):
        optimizer = kwargs["optimizer"] if "optimizer" in kwargs else args[2]
        if self.trainer.global_step < self.hparams.lr_warmup_steps:
            lr_scale = min(1.0, float(self.trainer.global_step + 1) / float(self.hparams.lr_warmup_steps))
            for pg in optimizer.param_groups:
                pg["lr"] = lr_scale * self.hparams.lr
        super().optimizer_step(*args, **kwargs)
        optimizer.zero_grad()

    def training_epoch_end(self, training_step_outputs):
        dm = self.trainer.datamodule
        if hasattr(dm, "test_dataset") and len(dm.test_dataset) > 0:
            delta = 0 if self.hparams.reload == 1 else 1
            should_reset = (
                (self.current_epoch + delta + 1) % self.hparams.test_interval == 0
                or ((self.current_epoch + delta) % self.hparams.test_interval == 0 and self.current_epoch != 0)
            )
            if should_reset:
                self.trainer.reset_val_dataloader()
                self.trainer.fit_loop.epoch_loop.val_loop.epoch_loop._reset_dl_batch_idx(len(self.trainer.val_dataloaders))

    def validation_epoch_end(self, validation_step_outputs):
        if not self.trainer.sanity_checking:
            result_dict = {
                "epoch": float(self.current_epoch),
                "lr": self.trainer.optimizers[0].param_groups[0]["lr"],
                "train_loss": torch.stack(self.losses["train"]).mean(),
                "val_loss": torch.stack(self.losses["val"]).mean(),
            }

            # add test loss if available
            if len(self.losses["test"]) > 0:
                result_dict["test_loss"] = torch.stack(self.losses["test"]).mean()

            # if prediction and derivative are present, also log them separately
            if len(self.losses["train_y"]) > 0 and len(self.losses["train_dy"]) > 0:
                result_dict["train_loss_y"] = torch.stack(self.losses["train_y"]).mean()
                result_dict["train_loss_dy"] = torch.stack(self.losses["train_dy"]).mean()
                result_dict["val_loss_y"] = torch.stack(self.losses["val_y"]).mean()
                result_dict["val_loss_dy"] = torch.stack(self.losses["val_dy"]).mean()

            if len(self.losses["test_y"]) > 0 and len(self.losses["test_dy"]) > 0:
                result_dict["test_loss_y"] = torch.stack(self.losses["test_y"]).mean()
                result_dict["test_loss_dy"] = torch.stack(self.losses["test_dy"]).mean()

            self.log_dict(result_dict, sync_dist=True)
            
        self._reset_losses_dict()
        self._reset_inference_results()

    def test_epoch_end(self, outputs) -> None:
        for key in self.inference_results.keys():
            if len(self.inference_results[key]) > 0:
                self.inference_results[key] = torch.cat(self.inference_results[key], dim=0)

    def _reset_losses_dict(self):
        self.losses = {
            "train": [], "val": [], "test": [],
            "train_y": [], "val_y": [], "test_y": [],
            "train_dy": [], "val_dy": [], "test_dy": [],
        }

    def _reset_inference_results(self):
        self.inference_results = {'y_pred': [], 'y_true': [], 'dy_pred': [], 'dy_true': []}
        
    def _reset_ema_dict(self):
        self.ema = {"train_y": None, "val_y": None, "train_dy": None, "val_dy": None}


def get_args():
    parser = argparse.ArgumentParser(description='Training')
    parser.add_argument('--load-model', action=LoadFromCheckpoint, help='Restart training using a model checkpoint')  # keep first
    parser.add_argument('--conf', '-c', type=open, action=LoadFromFile, help='Configuration yaml file')  # keep second
    
    # training settings
    parser.add_argument('--num-epochs', default=300, type=int, help='number of epochs')
    parser.add_argument('--lr-warmup-steps', type=int, default=0, help='How many steps to warm-up over. Defaults to 0 for no warm-up')
    parser.add_argument('--lr', default=1e-4, type=float, help='learning rate')
    parser.add_argument('--lr-patience', type=int, default=10, help='Patience for lr-schedule. Patience per eval-interval of validation')
    parser.add_argument('--lr-min', type=float, default=1e-6, help='Minimum learning rate before early stop')
    parser.add_argument('--lr-factor', type=float, default=0.8, help='Minimum learning rate before early stop')
    parser.add_argument('--weight-decay', type=float, default=0.0, help='Weight decay strength')
    parser.add_argument('--early-stopping-patience', type=int, default=30, help='Stop training after this many epochs without improvement')
    parser.add_argument('--loss-type', type=str, default='MSE', choices=['MSE', 'MAE'], help='Loss type')
    parser.add_argument('--loss-scale-y', type=float, default=1.0, help="Scale the loss y of the target")
    parser.add_argument('--loss-scale-dy', type=float, default=1.0, help="Scale the loss dy of the target")
    parser.add_argument('--energy-weight', default=1.0, type=float, help='Weighting factor for energies in the loss function')
    parser.add_argument('--force-weight', default=1.0, type=float, help='Weighting factor for forces in the loss function')
    
    # dataset specific
    parser.add_argument('--dataset', default=None, type=str, choices=datasets.__all__, help='Name of the torch_geometric dataset')
    parser.add_argument('--dataset-arg', default=None, type=str, help='Additional dataset argument')
    parser.add_argument('--dataset-root', default=None, type=str, help='Data storage directory')
    parser.add_argument('--derivative', default=False, action=argparse.BooleanOptionalAction, help='If true, take the derivative of the prediction w.r.t coordinates')
    parser.add_argument('--split-mode', default=None, type=str, help='Split mode for Molecule3D dataset')
    
    # dataloader specific
    parser.add_argument('--reload', type=int, default=0, help='Reload dataloaders every n epoch')
    parser.add_argument('--batch-size', default=32, type=int, help='batch size')
    parser.add_argument('--inference-batch-size', default=None, type=int, help='Batchsize for validation and tests.')
    parser.add_argument('--standardize', action=argparse.BooleanOptionalAction, default=False, help='If true, multiply prediction by dataset std and add mean')
    parser.add_argument('--splits', default=None, help='Npz with splits idx_train, idx_val, idx_test')
    parser.add_argument('--train-size', type=number, default=950, help='Percentage/number of samples in training set (None to use all remaining samples)')
    parser.add_argument('--val-size', type=number, default=50, help='Percentage/number of samples in validation set (None to use all remaining samples)')
    parser.add_argument('--test-size', type=number, default=None, help='Percentage/number of samples in test set (None to use all remaining samples)')
    parser.add_argument('--num-workers', type=int, default=4, help='Number of workers for data prefetch')
    
    # model architecture specific
    parser.add_argument('--model', type=str, default='ViSNetBlock', choices=models.__all__, help='Which model to train')
    parser.add_argument('--output-model', type=str, default='Scalar', choices=output_modules.__all__, help='The type of output model')
    parser.add_argument('--prior-model', type=str, default=None, choices=priors.__all__, help='Which prior model to use')
    parser.add_argument('--prior-args', type=dict, default=None, help='Additional arguments for the prior model')
    
    # architectural specific
    parser.add_argument('--embedding-dimension', type=int, default=256, help='Embedding dimension')
    parser.add_argument('--num-layers', type=int, default=6, help='Number of interaction layers in the model')
    parser.add_argument('--num-rbf', type=int, default=64, help='Number of radial basis functions in model')
    parser.add_argument('--activation', type=str, default='silu', choices=list(act_class_mapping.keys()), help='Activation function')
    parser.add_argument('--rbf-type', type=str, default='expnorm', choices=list(rbf_class_mapping.keys()), help='Type of distance expansion')
    parser.add_argument('--trainable-rbf', action=argparse.BooleanOptionalAction, default=False, help='If distance expansion functions should be trainable')
    parser.add_argument('--attn-activation', default='silu', choices=list(act_class_mapping.keys()), help='Attention activation function')
    parser.add_argument('--num-heads', type=int, default=8, help='Number of attention heads')
    parser.add_argument('--cutoff', type=float, default=5.0, help='Cutoff in model')
    parser.add_argument('--max-z', type=int, default=100, help='Maximum atomic number that fits in the embedding matrix')
    parser.add_argument('--max-num-neighbors', type=int, default=32, help='Maximum number of neighbors to consider in the network')
    parser.add_argument('--reduce-op', type=str, default='add', choices=['add', 'mean'], help='Reduce operation to apply to atomic predictions')
    parser.add_argument('--lmax', type=int, default=2, help='Max order of spherical harmonics')
    parser.add_argument('--vecnorm-type', type=str, default='max_min', help='Type of vector normalization')
    parser.add_argument('--trainable-vecnorm', action=argparse.BooleanOptionalAction, default=False, help='If vector normalization should be trainable')
    parser.add_argument('--vertex-type', type=str, default='HEDGE', choices=['None', 'Edge', 'Node', 'HEDGE'], help='Type of vertex model to use, HEDGE for Geometry-Enhanced Directional Attention')
    parser.add_argument('--use-substructures', action=argparse.BooleanOptionalAction, default=True, help='Enable hierarchical substructure representation')

    # other specific
    parser.add_argument('--ngpus', type=int, default=-1, help='Number of GPUs, -1 use all available. Use CUDA_VISIBLE_DEVICES=1, to decide gpus')
    parser.add_argument('--num-nodes', type=int, default=1, help='Number of nodes')
    parser.add_argument('--precision', type=int, default=32, choices=[16, 32], help='Floating point precision')
    parser.add_argument('--log-dir', type=str, default=None, help='Log directory')
    parser.add_argument('--task', type=str, default='train', choices=['train', 'inference'], help='Train or inference') 
    parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)')
    parser.add_argument('--distributed-backend', default='ddp', help='Distributed backend')
    parser.add_argument('--redirect', action=argparse.BooleanOptionalAction, default=False, help='Redirect stdout and stderr to log_dir/log')
    parser.add_argument('--accelerator', default='gpu', help='Supports passing different accelerator types ("cpu", "gpu", "tpu", "ipu", "auto")')
    parser.add_argument('--test-interval', type=int, default=10, help='Test interval, one test per n epochs (default: 10)')
    parser.add_argument('--save-interval', type=int, default=10, help='Save interval, one save per n epochs (default: 10)')
    parser.add_argument("--out_dir", type=str, default="run_0")
    
    args = parser.parse_args()

    if args.redirect:
        os.makedirs(args.log_dir, exist_ok=True)
        sys.stdout = open(os.path.join(args.log_dir, "log"), "w")
        sys.stderr = sys.stdout
        logging.getLogger("pytorch_lightning").addHandler(logging.StreamHandler(sys.stdout))

    if args.inference_batch_size is None:
        args.inference_batch_size = args.batch_size
    save_argparse(args, os.path.join(args.log_dir, "input.yaml"), exclude=["conf"])
    
    return args

def main(args):
    
    pl.seed_everything(args.seed, workers=True)

    # initialize data module
    data = DataModule(args)
    data.prepare_dataset()

    default = ",".join(str(i) for i in range(torch.cuda.device_count()))
    cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES", default=default).split(",")
    dir_name = f"output_ngpus_{len(cuda_visible_devices)}_bs_{args.batch_size}_lr_{args.lr}_seed_{args.seed}" + \
               f"_reload_{args.reload}_lmax_{args.lmax}_vnorm_{args.vecnorm_type}" + \
               f"_vertex_{args.vertex_type}_L{args.num_layers}_D{args.embedding_dimension}_H{args.num_heads}" + \
               f"_cutoff_{args.cutoff}_E{args.energy_weight}_F{args.force_weight}_loss_{args.loss_type}"
    
    if args.load_model is None:
        args.log_dir = os.path.join(args.log_dir, dir_name)
        if os.path.exists(args.log_dir):
            if os.path.exists(os.path.join(args.log_dir, "last.ckpt")):
                args.load_model = os.path.join(args.log_dir, "last.ckpt")
            csv_path = os.path.join(args.log_dir, "metrics.csv")
            while os.path.exists(csv_path):
                csv_path = csv_path + '.bak'
            if os.path.exists(os.path.join(args.log_dir, "metrics.csv")):
                os.rename(os.path.join(args.log_dir, "metrics.csv"), csv_path)

    prior = None
    if args.prior_model:
        assert hasattr(priors, args.prior_model), (
            f"Unknown prior model {args['prior_model']}. "
            f"Available models are {', '.join(priors.__all__)}"
        )
        # initialize the prior model
        prior = getattr(priors, args.prior_model)(dataset=data.dataset)
        args.prior_args = prior.get_init_args()

    # initialize lightning module
    model = LNNP(args, prior_model=prior, mean=data.mean, std=data.std)

    if args.task == "train":
        
        checkpoint_callback = ModelCheckpoint(
            dirpath=args.log_dir,
            monitor="val_loss",
            save_top_k=10,
            save_last=True,
            every_n_epochs=args.save_interval,
            filename="{epoch}-{val_loss:.4f}-{test_loss:.4f}",
        )
        
        early_stopping = EarlyStopping("val_loss", patience=args.early_stopping_patience)
        tb_logger = TensorBoardLogger(args.log_dir, name="tensorbord", version="", default_hp_metric=False)
        csv_logger = CSVLogger(args.log_dir, name="", version="")
        ddp_plugin = DDPStrategy(find_unused_parameters=False)

        trainer = pl.Trainer(
            max_epochs=args.num_epochs,
            gpus=args.ngpus,
            num_nodes=args.num_nodes,
            accelerator=args.accelerator,
            default_root_dir=args.log_dir,
            auto_lr_find=False,
            callbacks=[early_stopping, checkpoint_callback],
            logger=[tb_logger, csv_logger],
            reload_dataloaders_every_n_epochs=args.reload,
            precision=args.precision,
            strategy=ddp_plugin,
            enable_progress_bar=True,
        )

        trainer.fit(model, datamodule=data, ckpt_path=args.load_model)

    test_trainer = pl.Trainer(
        logger=False,
        max_epochs=-1,
        num_nodes=1,
        gpus=1,
        default_root_dir=args.log_dir,
        enable_progress_bar=True,
        inference_mode=False,
    )
        
    if args.task == 'train':
        test_trainer.test(model=model, ckpt_path=trainer.checkpoint_callback.best_model_path, datamodule=data)
    elif args.task == 'inference':
        test_trainer.test(model=model, datamodule=data)
        #torch.save(model.inference_results, os.path.join(args.log_dir, "inference_results.pt"))
    
    emae = calculate_mae(model.inference_results['y_true'].numpy(), model.inference_results['y_pred'].numpy())
    Scalar_MAE = "{:.6f}".format(emae)
    print('Scalar MAE: {:.6f}'.format(emae))

    final_infos = {
        "AutoMolecule3D":{
            "means":{
                "Scalar MAE": Scalar_MAE
            }
        }
    }

    if args.derivative:
        fmae = calculate_mae(model.inference_results['dy_true'].numpy(), model.inference_results['dy_pred'].numpy())
        Forces_MAE = "{:.6f}".format(fmae)
        print('Forces MAE: {:.6f}'.format(fmae))
        final_infos["AutoMolecule3D"]["means"]["Forces MAE"] = Forces_MAE

    with open(os.path.join(args.out_dir, "final_info.json"), "w") as f:
        json.dump(final_infos, f)

if __name__ == "__main__":
    args = get_args()
    try:
        main(args)
    except Exception as e:
        print("Origin error in main process:", flush=True)
        traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
        raise