File size: 19,859 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import copy
import numpy as np
import torch
import torch.nn as nn
from torch.nn.init import kaiming_normal_
from ..model_utils import model_nms_utils
from ..model_utils import centernet_utils
from ...utils import loss_utils
from functools import partial
class SeparateHead(nn.Module):
def __init__(self, input_channels, sep_head_dict, init_bias=-2.19, use_bias=False, norm_func=None):
super().__init__()
self.sep_head_dict = sep_head_dict
for cur_name in self.sep_head_dict:
output_channels = self.sep_head_dict[cur_name]['out_channels']
num_conv = self.sep_head_dict[cur_name]['num_conv']
fc_list = []
for k in range(num_conv - 1):
fc_list.append(nn.Sequential(
nn.Conv2d(input_channels, input_channels, kernel_size=3, stride=1, padding=1, bias=use_bias),
nn.BatchNorm2d(input_channels) if norm_func is None else norm_func(input_channels),
nn.ReLU()
))
fc_list.append(nn.Conv2d(input_channels, output_channels, kernel_size=3, stride=1, padding=1, bias=True))
fc = nn.Sequential(*fc_list)
if 'hm' in cur_name:
fc[-1].bias.data.fill_(init_bias)
else:
for m in fc.modules():
if isinstance(m, nn.Conv2d):
kaiming_normal_(m.weight.data)
if hasattr(m, "bias") and m.bias is not None:
nn.init.constant_(m.bias, 0)
self.__setattr__(cur_name, fc)
def forward(self, x):
ret_dict = {}
for cur_name in self.sep_head_dict:
ret_dict[cur_name] = self.__getattr__(cur_name)(x)
return ret_dict
class CenterHead(nn.Module):
def __init__(self, model_cfg, input_channels, num_class, class_names, grid_size, point_cloud_range, voxel_size,
predict_boxes_when_training=True):
super().__init__()
self.model_cfg = model_cfg
self.num_class = num_class
self.grid_size = grid_size
self.point_cloud_range = point_cloud_range
self.voxel_size = voxel_size
self.feature_map_stride = self.model_cfg.TARGET_ASSIGNER_CONFIG.get('FEATURE_MAP_STRIDE', None)
self.class_names = class_names
self.class_names_each_head = []
self.class_id_mapping_each_head = []
for cur_class_names in self.model_cfg.CLASS_NAMES_EACH_HEAD:
self.class_names_each_head.append([x for x in cur_class_names if x in class_names])
cur_class_id_mapping = torch.from_numpy(np.array(
[self.class_names.index(x) for x in cur_class_names if x in class_names]
)).cuda()
self.class_id_mapping_each_head.append(cur_class_id_mapping)
total_classes = sum([len(x) for x in self.class_names_each_head])
assert total_classes == len(self.class_names), f'class_names_each_head={self.class_names_each_head}'
norm_func = partial(nn.BatchNorm2d, eps=self.model_cfg.get('BN_EPS', 1e-5), momentum=self.model_cfg.get('BN_MOM', 0.1))
self.shared_conv = nn.Sequential(
nn.Conv2d(
input_channels, self.model_cfg.SHARED_CONV_CHANNEL, 3, stride=1, padding=1,
bias=self.model_cfg.get('USE_BIAS_BEFORE_NORM', False)
),
norm_func(self.model_cfg.SHARED_CONV_CHANNEL),
nn.ReLU(),
)
self.heads_list = nn.ModuleList()
self.separate_head_cfg = self.model_cfg.SEPARATE_HEAD_CFG
for idx, cur_class_names in enumerate(self.class_names_each_head):
cur_head_dict = copy.deepcopy(self.separate_head_cfg.HEAD_DICT)
cur_head_dict['hm'] = dict(out_channels=len(cur_class_names), num_conv=self.model_cfg.NUM_HM_CONV)
self.heads_list.append(
SeparateHead(
input_channels=self.model_cfg.SHARED_CONV_CHANNEL,
sep_head_dict=cur_head_dict,
init_bias=-2.19,
use_bias=self.model_cfg.get('USE_BIAS_BEFORE_NORM', False),
norm_func=norm_func
)
)
self.predict_boxes_when_training = predict_boxes_when_training
self.forward_ret_dict = {}
self.build_losses()
def build_losses(self):
self.add_module('hm_loss_func', loss_utils.FocalLossCenterNet())
self.add_module('reg_loss_func', loss_utils.RegLossCenterNet())
def assign_target_of_single_head(
self, num_classes, gt_boxes, feature_map_size, feature_map_stride, num_max_objs=500,
gaussian_overlap=0.1, min_radius=2
):
"""
Args:
gt_boxes: (N, 8)
feature_map_size: (2), [x, y]
Returns:
"""
heatmap = gt_boxes.new_zeros(num_classes, feature_map_size[1], feature_map_size[0])
ret_boxes = gt_boxes.new_zeros((num_max_objs, gt_boxes.shape[-1] - 1 + 1))
inds = gt_boxes.new_zeros(num_max_objs).long()
mask = gt_boxes.new_zeros(num_max_objs).long()
ret_boxes_src = gt_boxes.new_zeros(num_max_objs, gt_boxes.shape[-1])
ret_boxes_src[:gt_boxes.shape[0]] = gt_boxes
x, y, z = gt_boxes[:, 0], gt_boxes[:, 1], gt_boxes[:, 2]
coord_x = (x - self.point_cloud_range[0]) / self.voxel_size[0] / feature_map_stride
coord_y = (y - self.point_cloud_range[1]) / self.voxel_size[1] / feature_map_stride
coord_x = torch.clamp(coord_x, min=0, max=feature_map_size[0] - 0.5) # bugfixed: 1e-6 does not work for center.int()
coord_y = torch.clamp(coord_y, min=0, max=feature_map_size[1] - 0.5) #
center = torch.cat((coord_x[:, None], coord_y[:, None]), dim=-1)
center_int = center.int()
center_int_float = center_int.float()
dx, dy, dz = gt_boxes[:, 3], gt_boxes[:, 4], gt_boxes[:, 5]
dx = dx / self.voxel_size[0] / feature_map_stride
dy = dy / self.voxel_size[1] / feature_map_stride
radius = centernet_utils.gaussian_radius(dx, dy, min_overlap=gaussian_overlap)
radius = torch.clamp_min(radius.int(), min=min_radius)
for k in range(min(num_max_objs, gt_boxes.shape[0])):
if dx[k] <= 0 or dy[k] <= 0:
continue
if not (0 <= center_int[k][0] <= feature_map_size[0] and 0 <= center_int[k][1] <= feature_map_size[1]):
continue
cur_class_id = (gt_boxes[k, -1] - 1).long()
centernet_utils.draw_gaussian_to_heatmap(heatmap[cur_class_id], center[k], radius[k].item())
inds[k] = center_int[k, 1] * feature_map_size[0] + center_int[k, 0]
mask[k] = 1
ret_boxes[k, 0:2] = center[k] - center_int_float[k].float()
ret_boxes[k, 2] = z[k]
ret_boxes[k, 3:6] = gt_boxes[k, 3:6].log()
ret_boxes[k, 6] = torch.cos(gt_boxes[k, 6])
ret_boxes[k, 7] = torch.sin(gt_boxes[k, 6])
if gt_boxes.shape[1] > 8:
ret_boxes[k, 8:] = gt_boxes[k, 7:-1]
return heatmap, ret_boxes, inds, mask, ret_boxes_src
def assign_targets(self, gt_boxes, feature_map_size=None, **kwargs):
"""
Args:
gt_boxes: (B, M, 8)
range_image_polar: (B, 3, H, W)
feature_map_size: (2) [H, W]
spatial_cartesian: (B, 4, H, W)
Returns:
"""
feature_map_size = feature_map_size[::-1] # [H, W] ==> [x, y]
target_assigner_cfg = self.model_cfg.TARGET_ASSIGNER_CONFIG
# feature_map_size = self.grid_size[:2] // target_assigner_cfg.FEATURE_MAP_STRIDE
batch_size = gt_boxes.shape[0]
ret_dict = {
'heatmaps': [],
'target_boxes': [],
'inds': [],
'masks': [],
'heatmap_masks': [],
'target_boxes_src': [],
}
all_names = np.array(['bg', *self.class_names])
for idx, cur_class_names in enumerate(self.class_names_each_head):
heatmap_list, target_boxes_list, inds_list, masks_list, target_boxes_src_list = [], [], [], [], []
for bs_idx in range(batch_size):
cur_gt_boxes = gt_boxes[bs_idx]
gt_class_names = all_names[cur_gt_boxes[:, -1].cpu().long().numpy()]
gt_boxes_single_head = []
for idx, name in enumerate(gt_class_names):
if name not in cur_class_names:
continue
temp_box = cur_gt_boxes[idx]
temp_box[-1] = cur_class_names.index(name) + 1
gt_boxes_single_head.append(temp_box[None, :])
if len(gt_boxes_single_head) == 0:
gt_boxes_single_head = cur_gt_boxes[:0, :]
else:
gt_boxes_single_head = torch.cat(gt_boxes_single_head, dim=0)
heatmap, ret_boxes, inds, mask, ret_boxes_src = self.assign_target_of_single_head(
num_classes=len(cur_class_names), gt_boxes=gt_boxes_single_head.cpu(),
feature_map_size=feature_map_size, feature_map_stride=target_assigner_cfg.FEATURE_MAP_STRIDE,
num_max_objs=target_assigner_cfg.NUM_MAX_OBJS,
gaussian_overlap=target_assigner_cfg.GAUSSIAN_OVERLAP,
min_radius=target_assigner_cfg.MIN_RADIUS,
)
heatmap_list.append(heatmap.to(gt_boxes_single_head.device))
target_boxes_list.append(ret_boxes.to(gt_boxes_single_head.device))
inds_list.append(inds.to(gt_boxes_single_head.device))
masks_list.append(mask.to(gt_boxes_single_head.device))
target_boxes_src_list.append(ret_boxes_src.to(gt_boxes_single_head.device))
ret_dict['heatmaps'].append(torch.stack(heatmap_list, dim=0))
ret_dict['target_boxes'].append(torch.stack(target_boxes_list, dim=0))
ret_dict['inds'].append(torch.stack(inds_list, dim=0))
ret_dict['masks'].append(torch.stack(masks_list, dim=0))
ret_dict['target_boxes_src'].append(torch.stack(target_boxes_src_list, dim=0))
return ret_dict
def sigmoid(self, x):
y = torch.clamp(x.sigmoid(), min=1e-4, max=1 - 1e-4)
return y
def get_loss(self):
pred_dicts = self.forward_ret_dict['pred_dicts']
target_dicts = self.forward_ret_dict['target_dicts']
tb_dict = {}
loss = 0
for idx, pred_dict in enumerate(pred_dicts):
pred_dict['hm'] = self.sigmoid(pred_dict['hm'])
hm_loss = self.hm_loss_func(pred_dict['hm'], target_dicts['heatmaps'][idx])
hm_loss *= self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS['cls_weight']
target_boxes = target_dicts['target_boxes'][idx]
pred_boxes = torch.cat([pred_dict[head_name] for head_name in self.separate_head_cfg.HEAD_ORDER], dim=1)
reg_loss = self.reg_loss_func(
pred_boxes, target_dicts['masks'][idx], target_dicts['inds'][idx], target_boxes
)
loc_loss = (reg_loss * reg_loss.new_tensor(self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS['code_weights'])).sum()
loc_loss = loc_loss * self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS['loc_weight']
loss += hm_loss + loc_loss
tb_dict['hm_loss_head_%d' % idx] = hm_loss.item()
tb_dict['loc_loss_head_%d' % idx] = loc_loss.item()
if 'iou' in pred_dict or self.model_cfg.get('IOU_REG_LOSS', False):
batch_box_preds = centernet_utils.decode_bbox_from_pred_dicts(
pred_dict=pred_dict,
point_cloud_range=self.point_cloud_range, voxel_size=self.voxel_size,
feature_map_stride=self.feature_map_stride
) # (B, H, W, 7 or 9)
if 'iou' in pred_dict:
batch_box_preds_for_iou = batch_box_preds.permute(0, 3, 1, 2) # (B, 7 or 9, H, W)
iou_loss = loss_utils.calculate_iou_loss_centerhead(
iou_preds=pred_dict['iou'],
batch_box_preds=batch_box_preds_for_iou.clone().detach(),
mask=target_dicts['masks'][idx],
ind=target_dicts['inds'][idx], gt_boxes=target_dicts['target_boxes_src'][idx]
)
loss += iou_loss
tb_dict['iou_loss_head_%d' % idx] = iou_loss.item()
if self.model_cfg.get('IOU_REG_LOSS', False):
iou_reg_loss = loss_utils.calculate_iou_reg_loss_centerhead(
batch_box_preds=batch_box_preds_for_iou,
mask=target_dicts['masks'][idx],
ind=target_dicts['inds'][idx], gt_boxes=target_dicts['target_boxes_src'][idx]
)
if target_dicts['masks'][idx].sum().item() != 0:
iou_reg_loss = iou_reg_loss * self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS['loc_weight']
loss += iou_reg_loss
tb_dict['iou_reg_loss_head_%d' % idx] = iou_reg_loss.item()
else:
loss += (batch_box_preds_for_iou * 0.).sum()
tb_dict['iou_reg_loss_head_%d' % idx] = (batch_box_preds_for_iou * 0.).sum()
tb_dict['rpn_loss'] = loss.item()
return loss, tb_dict
def generate_predicted_boxes(self, batch_size, pred_dicts):
post_process_cfg = self.model_cfg.POST_PROCESSING
post_center_limit_range = torch.tensor(post_process_cfg.POST_CENTER_LIMIT_RANGE).cuda().float()
ret_dict = [{
'pred_boxes': [],
'pred_scores': [],
'pred_labels': [],
} for k in range(batch_size)]
for idx, pred_dict in enumerate(pred_dicts):
batch_hm = pred_dict['hm'].sigmoid()
batch_center = pred_dict['center']
batch_center_z = pred_dict['center_z']
batch_dim = pred_dict['dim'].exp()
batch_rot_cos = pred_dict['rot'][:, 0].unsqueeze(dim=1)
batch_rot_sin = pred_dict['rot'][:, 1].unsqueeze(dim=1)
batch_vel = pred_dict['vel'] if 'vel' in self.separate_head_cfg.HEAD_ORDER else None
batch_iou = (pred_dict['iou'] + 1) * 0.5 if 'iou' in pred_dict else None
final_pred_dicts = centernet_utils.decode_bbox_from_heatmap(
heatmap=batch_hm, rot_cos=batch_rot_cos, rot_sin=batch_rot_sin,
center=batch_center, center_z=batch_center_z, dim=batch_dim, vel=batch_vel, iou=batch_iou,
point_cloud_range=self.point_cloud_range, voxel_size=self.voxel_size,
feature_map_stride=self.feature_map_stride,
K=post_process_cfg.MAX_OBJ_PER_SAMPLE,
circle_nms=(post_process_cfg.NMS_CONFIG.NMS_TYPE == 'circle_nms'),
score_thresh=post_process_cfg.SCORE_THRESH,
post_center_limit_range=post_center_limit_range
)
for k, final_dict in enumerate(final_pred_dicts):
final_dict['pred_labels'] = self.class_id_mapping_each_head[idx][final_dict['pred_labels'].long()]
if post_process_cfg.get('USE_IOU_TO_RECTIFY_SCORE', False) and 'pred_iou' in final_dict:
pred_iou = torch.clamp(final_dict['pred_iou'], min=0, max=1.0)
IOU_RECTIFIER = final_dict['pred_scores'].new_tensor(post_process_cfg.IOU_RECTIFIER)
final_dict['pred_scores'] = torch.pow(final_dict['pred_scores'], 1 - IOU_RECTIFIER[final_dict['pred_labels']]) * torch.pow(pred_iou, IOU_RECTIFIER[final_dict['pred_labels']])
if post_process_cfg.NMS_CONFIG.NMS_TYPE not in ['circle_nms', 'class_specific_nms']:
selected, selected_scores = model_nms_utils.class_agnostic_nms(
box_scores=final_dict['pred_scores'], box_preds=final_dict['pred_boxes'],
nms_config=post_process_cfg.NMS_CONFIG,
score_thresh=None
)
elif post_process_cfg.NMS_CONFIG.NMS_TYPE == 'class_specific_nms':
selected, selected_scores = model_nms_utils.class_specific_nms(
box_scores=final_dict['pred_scores'], box_preds=final_dict['pred_boxes'],
box_labels=final_dict['pred_labels'], nms_config=post_process_cfg.NMS_CONFIG,
score_thresh=post_process_cfg.NMS_CONFIG.get('SCORE_THRESH', None)
)
elif post_process_cfg.NMS_CONFIG.NMS_TYPE == 'circle_nms':
raise NotImplementedError
final_dict['pred_boxes'] = final_dict['pred_boxes'][selected]
final_dict['pred_scores'] = selected_scores
final_dict['pred_labels'] = final_dict['pred_labels'][selected]
ret_dict[k]['pred_boxes'].append(final_dict['pred_boxes'])
ret_dict[k]['pred_scores'].append(final_dict['pred_scores'])
ret_dict[k]['pred_labels'].append(final_dict['pred_labels'])
for k in range(batch_size):
ret_dict[k]['pred_boxes'] = torch.cat(ret_dict[k]['pred_boxes'], dim=0)
ret_dict[k]['pred_scores'] = torch.cat(ret_dict[k]['pred_scores'], dim=0)
ret_dict[k]['pred_labels'] = torch.cat(ret_dict[k]['pred_labels'], dim=0) + 1
return ret_dict
@staticmethod
def reorder_rois_for_refining(batch_size, pred_dicts):
num_max_rois = max([len(cur_dict['pred_boxes']) for cur_dict in pred_dicts])
num_max_rois = max(1, num_max_rois) # at least one faked rois to avoid error
pred_boxes = pred_dicts[0]['pred_boxes']
rois = pred_boxes.new_zeros((batch_size, num_max_rois, pred_boxes.shape[-1]))
roi_scores = pred_boxes.new_zeros((batch_size, num_max_rois))
roi_labels = pred_boxes.new_zeros((batch_size, num_max_rois)).long()
for bs_idx in range(batch_size):
num_boxes = len(pred_dicts[bs_idx]['pred_boxes'])
rois[bs_idx, :num_boxes, :] = pred_dicts[bs_idx]['pred_boxes']
roi_scores[bs_idx, :num_boxes] = pred_dicts[bs_idx]['pred_scores']
roi_labels[bs_idx, :num_boxes] = pred_dicts[bs_idx]['pred_labels']
return rois, roi_scores, roi_labels
def forward(self, data_dict):
spatial_features_2d = data_dict['spatial_features_2d']
x = self.shared_conv(spatial_features_2d)
pred_dicts = []
for head in self.heads_list:
pred_dicts.append(head(x))
if self.training:
target_dict = self.assign_targets(
data_dict['gt_boxes'], feature_map_size=spatial_features_2d.size()[2:],
feature_map_stride=data_dict.get('spatial_features_2d_strides', None)
)
self.forward_ret_dict['target_dicts'] = target_dict
self.forward_ret_dict['pred_dicts'] = pred_dicts
if not self.training or self.predict_boxes_when_training:
pred_dicts = self.generate_predicted_boxes(
data_dict['batch_size'], pred_dicts
)
if self.predict_boxes_when_training:
rois, roi_scores, roi_labels = self.reorder_rois_for_refining(data_dict['batch_size'], pred_dicts)
data_dict['rois'] = rois
data_dict['roi_scores'] = roi_scores
data_dict['roi_labels'] = roi_labels
data_dict['has_class_labels'] = True
else:
data_dict['final_box_dicts'] = pred_dicts
return data_dict
|