File size: 15,887 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import numpy as np
import scipy
import torch
import copy
from scipy.spatial import Delaunay

from ..ops.roiaware_pool3d import roiaware_pool3d_utils
from . import common_utils


def in_hull(p, hull):
    """
    :param p: (N, K) test points
    :param hull: (M, K) M corners of a box
    :return (N) bool
    """
    try:
        if not isinstance(hull, Delaunay):
            hull = Delaunay(hull)
        flag = hull.find_simplex(p) >= 0
    except scipy.spatial.qhull.QhullError:
        print('Warning: not a hull %s' % str(hull))
        flag = np.zeros(p.shape[0], dtype=np.bool)

    return flag


def boxes_to_corners_3d(boxes3d):
    """
        7 -------- 4
       /|         /|
      6 -------- 5 .
      | |        | |
      . 3 -------- 0
      |/         |/
      2 -------- 1
    Args:
        boxes3d:  (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center

    Returns:
    """
    boxes3d, is_numpy = common_utils.check_numpy_to_torch(boxes3d)

    template = boxes3d.new_tensor((
        [1, 1, -1], [1, -1, -1], [-1, -1, -1], [-1, 1, -1],
        [1, 1, 1], [1, -1, 1], [-1, -1, 1], [-1, 1, 1],
    )) / 2

    corners3d = boxes3d[:, None, 3:6].repeat(1, 8, 1) * template[None, :, :]
    corners3d = common_utils.rotate_points_along_z(corners3d.view(-1, 8, 3), boxes3d[:, 6]).view(-1, 8, 3)
    corners3d += boxes3d[:, None, 0:3]

    return corners3d.numpy() if is_numpy else corners3d

def corners_rect_to_camera(corners):
    """
        7 -------- 4
       /|         /|
      6 -------- 5 .
      | |        | |
      . 3 -------- 0
      |/         |/
      2 -------- 1
    Args:
        corners:  (8, 3) [x0, y0, z0, ...], (x, y, z) is the point coordinate in image rect

    Returns:
        boxes_rect:  (7,) [x, y, z, l, h, w, r] in rect camera coords
    """
    height_group = [(0, 4), (1, 5), (2, 6), (3, 7)]
    width_group = [(0, 1), (2, 3), (4, 5), (6, 7)]
    length_group = [(0, 3), (1, 2), (4, 7), (5, 6)]
    vector_group = [(0, 3), (1, 2), (4, 7), (5, 6)]
    height, width, length = 0., 0., 0.
    vector = np.zeros(2, dtype=np.float32)
    for index_h, index_w, index_l, index_v in zip(height_group, width_group, length_group, vector_group):
        height += np.linalg.norm(corners[index_h[0], :] - corners[index_h[1], :])
        width += np.linalg.norm(corners[index_w[0], :] - corners[index_w[1], :])
        length += np.linalg.norm(corners[index_l[0], :] - corners[index_l[1], :])
        vector[0] += (corners[index_v[0], :] - corners[index_v[1], :])[0]
        vector[1] += (corners[index_v[0], :] - corners[index_v[1], :])[2]

    height, width, length = height*1.0/4, width*1.0/4, length*1.0/4
    rotation_y = -np.arctan2(vector[1], vector[0])

    center_point = corners.mean(axis=0)
    center_point[1] += height/2
    camera_rect = np.concatenate([center_point, np.array([length, height, width, rotation_y])])

    return camera_rect


def mask_boxes_outside_range_numpy(boxes, limit_range, min_num_corners=1, use_center_to_filter=True):
    """
    Args:
        boxes: (N, 7) [x, y, z, dx, dy, dz, heading, ...], (x, y, z) is the box center
        limit_range: [minx, miny, minz, maxx, maxy, maxz]
        min_num_corners:

    Returns:

    """
    if boxes.shape[1] > 7:
        boxes = boxes[:, 0:7]
    if use_center_to_filter:
        box_centers = boxes[:, 0:3]
        mask = ((box_centers >= limit_range[0:3]) & (box_centers <= limit_range[3:6])).all(axis=-1)
    else:
        corners = boxes_to_corners_3d(boxes)  # (N, 8, 3)
        corners = corners[:, :, 0:2]
        mask = ((corners >= limit_range[0:2]) & (corners <= limit_range[3:5])).all(axis=2)
        mask = mask.sum(axis=1) >= min_num_corners  # (N)

    return mask


def remove_points_in_boxes3d(points, boxes3d):
    """
    Args:
        points: (num_points, 3 + C)
        boxes3d: (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center, each box DO NOT overlaps

    Returns:

    """
    boxes3d, is_numpy = common_utils.check_numpy_to_torch(boxes3d)
    points, is_numpy = common_utils.check_numpy_to_torch(points)
    point_masks = roiaware_pool3d_utils.points_in_boxes_cpu(points[:, 0:3], boxes3d)
    points = points[point_masks.sum(dim=0) == 0]

    return points.numpy() if is_numpy else points


def boxes3d_kitti_camera_to_lidar(boxes3d_camera, calib):
    """
    Args:
        boxes3d_camera: (N, 7) [x, y, z, l, h, w, r] in rect camera coords
        calib:

    Returns:
        boxes3d_lidar: [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center

    """
    boxes3d_camera_copy = copy.deepcopy(boxes3d_camera)
    xyz_camera, r = boxes3d_camera_copy[:, 0:3], boxes3d_camera_copy[:, 6:7]
    l, h, w = boxes3d_camera_copy[:, 3:4], boxes3d_camera_copy[:, 4:5], boxes3d_camera_copy[:, 5:6]

    xyz_lidar = calib.rect_to_lidar(xyz_camera)
    xyz_lidar[:, 2] += h[:, 0] / 2
    return np.concatenate([xyz_lidar, l, w, h, -(r + np.pi / 2)], axis=-1)


def boxes3d_kitti_fakelidar_to_lidar(boxes3d_lidar):
    """
    Args:
        boxes3d_fakelidar: (N, 7) [x, y, z, w, l, h, r] in old LiDAR coordinates, z is bottom center

    Returns:
        boxes3d_lidar: [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center

    """
    boxes3d_lidar_copy = copy.deepcopy(boxes3d_lidar)
    w, l, h = boxes3d_lidar_copy[:, 3:4], boxes3d_lidar_copy[:, 4:5], boxes3d_lidar_copy[:, 5:6]
    r = boxes3d_lidar_copy[:, 6:7]

    boxes3d_lidar_copy[:, 2] += h[:, 0] / 2
    return np.concatenate([boxes3d_lidar_copy[:, 0:3], l, w, h, -(r + np.pi / 2)], axis=-1)


def boxes3d_kitti_lidar_to_fakelidar(boxes3d_lidar):
    """
    Args:
        boxes3d_lidar: (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center

    Returns:
        boxes3d_fakelidar: [x, y, z, w, l, h, r] in old LiDAR coordinates, z is bottom center

    """
    boxes3d_lidar_copy = copy.deepcopy(boxes3d_lidar)
    dx, dy, dz = boxes3d_lidar_copy[:, 3:4], boxes3d_lidar_copy[:, 4:5], boxes3d_lidar_copy[:, 5:6]
    heading = boxes3d_lidar_copy[:, 6:7]

    boxes3d_lidar_copy[:, 2] -= dz[:, 0] / 2
    return np.concatenate([boxes3d_lidar_copy[:, 0:3], dy, dx, dz, -heading - np.pi / 2], axis=-1)


def enlarge_box3d(boxes3d, extra_width=(0, 0, 0)):
    """
    Args:
        boxes3d: [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center
        extra_width: [extra_x, extra_y, extra_z]

    Returns:

    """
    boxes3d, is_numpy = common_utils.check_numpy_to_torch(boxes3d)
    large_boxes3d = boxes3d.clone()

    large_boxes3d[:, 3:6] += boxes3d.new_tensor(extra_width)[None, :]
    return large_boxes3d


def boxes3d_lidar_to_kitti_camera(boxes3d_lidar, calib):
    """
    :param boxes3d_lidar: (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center
    :param calib:
    :return:
        boxes3d_camera: (N, 7) [x, y, z, l, h, w, r] in rect camera coords
    """
    boxes3d_lidar_copy = copy.deepcopy(boxes3d_lidar)
    xyz_lidar = boxes3d_lidar_copy[:, 0:3]
    l, w, h = boxes3d_lidar_copy[:, 3:4], boxes3d_lidar_copy[:, 4:5], boxes3d_lidar_copy[:, 5:6]
    r = boxes3d_lidar_copy[:, 6:7]

    xyz_lidar[:, 2] -= h.reshape(-1) / 2
    xyz_cam = calib.lidar_to_rect(xyz_lidar)
    # xyz_cam[:, 1] += h.reshape(-1) / 2
    r = -r - np.pi / 2
    return np.concatenate([xyz_cam, l, h, w, r], axis=-1)


def boxes3d_to_corners3d_kitti_camera(boxes3d, bottom_center=True):
    """
    :param boxes3d: (N, 7) [x, y, z, l, h, w, ry] in camera coords, see the definition of ry in KITTI dataset
    :param bottom_center: whether y is on the bottom center of object
    :return: corners3d: (N, 8, 3)
        7 -------- 4
       /|         /|
      6 -------- 5 .
      | |        | |
      . 3 -------- 0
      |/         |/
      2 -------- 1
    """
    boxes_num = boxes3d.shape[0]
    l, h, w = boxes3d[:, 3], boxes3d[:, 4], boxes3d[:, 5]
    x_corners = np.array([l / 2., l / 2., -l / 2., -l / 2., l / 2., l / 2., -l / 2., -l / 2], dtype=np.float32).T
    z_corners = np.array([w / 2., -w / 2., -w / 2., w / 2., w / 2., -w / 2., -w / 2., w / 2.], dtype=np.float32).T
    if bottom_center:
        y_corners = np.zeros((boxes_num, 8), dtype=np.float32)
        y_corners[:, 4:8] = -h.reshape(boxes_num, 1).repeat(4, axis=1)  # (N, 8)
    else:
        y_corners = np.array([h / 2., h / 2., h / 2., h / 2., -h / 2., -h / 2., -h / 2., -h / 2.], dtype=np.float32).T

    ry = boxes3d[:, 6]
    zeros, ones = np.zeros(ry.size, dtype=np.float32), np.ones(ry.size, dtype=np.float32)
    rot_list = np.array([[np.cos(ry), zeros, -np.sin(ry)],
                         [zeros, ones, zeros],
                         [np.sin(ry), zeros, np.cos(ry)]])  # (3, 3, N)
    R_list = np.transpose(rot_list, (2, 0, 1))  # (N, 3, 3)

    temp_corners = np.concatenate((x_corners.reshape(-1, 8, 1), y_corners.reshape(-1, 8, 1),
                                   z_corners.reshape(-1, 8, 1)), axis=2)  # (N, 8, 3)
    rotated_corners = np.matmul(temp_corners, R_list)  # (N, 8, 3)
    x_corners, y_corners, z_corners = rotated_corners[:, :, 0], rotated_corners[:, :, 1], rotated_corners[:, :, 2]

    x_loc, y_loc, z_loc = boxes3d[:, 0], boxes3d[:, 1], boxes3d[:, 2]

    x = x_loc.reshape(-1, 1) + x_corners.reshape(-1, 8)
    y = y_loc.reshape(-1, 1) + y_corners.reshape(-1, 8)
    z = z_loc.reshape(-1, 1) + z_corners.reshape(-1, 8)

    corners = np.concatenate((x.reshape(-1, 8, 1), y.reshape(-1, 8, 1), z.reshape(-1, 8, 1)), axis=2)

    return corners.astype(np.float32)


def boxes3d_kitti_camera_to_imageboxes(boxes3d, calib, image_shape=None):
    """
    :param boxes3d: (N, 7) [x, y, z, l, h, w, r] in rect camera coords
    :param calib:
    :return:
        box_2d_preds: (N, 4) [x1, y1, x2, y2]
    """
    corners3d = boxes3d_to_corners3d_kitti_camera(boxes3d)
    pts_img, _ = calib.rect_to_img(corners3d.reshape(-1, 3))
    corners_in_image = pts_img.reshape(-1, 8, 2)

    min_uv = np.min(corners_in_image, axis=1)  # (N, 2)
    max_uv = np.max(corners_in_image, axis=1)  # (N, 2)
    boxes2d_image = np.concatenate([min_uv, max_uv], axis=1)
    if image_shape is not None:
        boxes2d_image[:, 0] = np.clip(boxes2d_image[:, 0], a_min=0, a_max=image_shape[1] - 1)
        boxes2d_image[:, 1] = np.clip(boxes2d_image[:, 1], a_min=0, a_max=image_shape[0] - 1)
        boxes2d_image[:, 2] = np.clip(boxes2d_image[:, 2], a_min=0, a_max=image_shape[1] - 1)
        boxes2d_image[:, 3] = np.clip(boxes2d_image[:, 3], a_min=0, a_max=image_shape[0] - 1)

    return boxes2d_image


def boxes_iou_normal(boxes_a, boxes_b):
    """
    Args:
        boxes_a: (N, 4) [x1, y1, x2, y2]
        boxes_b: (M, 4) [x1, y1, x2, y2]

    Returns:

    """
    assert boxes_a.shape[1] == boxes_b.shape[1] == 4
    x_min = torch.max(boxes_a[:, 0, None], boxes_b[None, :, 0])
    x_max = torch.min(boxes_a[:, 2, None], boxes_b[None, :, 2])
    y_min = torch.max(boxes_a[:, 1, None], boxes_b[None, :, 1])
    y_max = torch.min(boxes_a[:, 3, None], boxes_b[None, :, 3])
    x_len = torch.clamp_min(x_max - x_min, min=0)
    y_len = torch.clamp_min(y_max - y_min, min=0)
    area_a = (boxes_a[:, 2] - boxes_a[:, 0]) * (boxes_a[:, 3] - boxes_a[:, 1])
    area_b = (boxes_b[:, 2] - boxes_b[:, 0]) * (boxes_b[:, 3] - boxes_b[:, 1])
    a_intersect_b = x_len * y_len
    iou = a_intersect_b / torch.clamp_min(area_a[:, None] + area_b[None, :] - a_intersect_b, min=1e-6)
    return iou


def boxes3d_lidar_to_aligned_bev_boxes(boxes3d):
    """
    Args:
        boxes3d: (N, 7 + C) [x, y, z, dx, dy, dz, heading] in lidar coordinate

    Returns:
        aligned_bev_boxes: (N, 4) [x1, y1, x2, y2] in the above lidar coordinate
    """
    rot_angle = common_utils.limit_period(boxes3d[:, 6], offset=0.5, period=np.pi).abs()
    choose_dims = torch.where(rot_angle[:, None] < np.pi / 4, boxes3d[:, [3, 4]], boxes3d[:, [4, 3]])
    aligned_bev_boxes = torch.cat((boxes3d[:, 0:2] - choose_dims / 2, boxes3d[:, 0:2] + choose_dims / 2), dim=1)
    return aligned_bev_boxes


def boxes3d_nearest_bev_iou(boxes_a, boxes_b):
    """
    Args:
        boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
        boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading]

    Returns:

    """
    boxes_bev_a = boxes3d_lidar_to_aligned_bev_boxes(boxes_a)
    boxes_bev_b = boxes3d_lidar_to_aligned_bev_boxes(boxes_b)

    return boxes_iou_normal(boxes_bev_a, boxes_bev_b)


def area(box) -> torch.Tensor:
    """
    Computes the area of all the boxes.

    Returns:
        torch.Tensor: a vector with areas of each box.
    """
    area = (box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1])
    return area


# implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py
# with slight modifications
def pairwise_iou(boxes1, boxes2) -> torch.Tensor:
    """
    Given two lists of boxes of size N and M,
    compute the IoU (intersection over union)
    between __all__ N x M pairs of boxes.
    The box order must be (xmin, ymin, xmax, ymax).

    Args:
        boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively.

    Returns:
        Tensor: IoU, sized [N,M].
    """
    area1 = area(boxes1)
    area2 = area(boxes2)

    width_height = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) - torch.max(
        boxes1[:, None, :2], boxes2[:, :2]
    )  # [N,M,2]

    width_height.clamp_(min=0)  # [N,M,2]
    inter = width_height.prod(dim=2)  # [N,M]
    del width_height

    # handle empty boxes
    iou = torch.where(
        inter > 0,
        inter / (area1[:, None] + area2 - inter),
        torch.zeros(1, dtype=inter.dtype, device=inter.device),
    )
    return iou


def center_to_corner2d(center, dim):
    corners_norm = torch.tensor([[-0.5, -0.5], [-0.5, 0.5], [0.5, 0.5], [0.5, -0.5]], device=dim.device).type_as(center)  # (4, 2)
    corners = dim.view([-1, 1, 2]) * corners_norm.view([1, 4, 2])  # (N, 4, 2)
    corners = corners + center.view(-1, 1, 2)
    return corners


def bbox3d_overlaps_diou(pred_boxes, gt_boxes):
    """
    https://github.com/agent-sgs/PillarNet/blob/master/det3d/core/utils/center_utils.py
    Args:
        pred_boxes (N, 7): 
        gt_boxes (N, 7): 

    Returns:
        _type_: _description_
    """
    assert pred_boxes.shape[0] == gt_boxes.shape[0]

    qcorners = center_to_corner2d(pred_boxes[:, :2], pred_boxes[:, 3:5])  # (N, 4, 2)
    gcorners = center_to_corner2d(gt_boxes[:, :2], gt_boxes[:, 3:5])  # (N, 4, 2)   

    inter_max_xy = torch.minimum(qcorners[:, 2], gcorners[:, 2])
    inter_min_xy = torch.maximum(qcorners[:, 0], gcorners[:, 0])
    out_max_xy = torch.maximum(qcorners[:, 2], gcorners[:, 2])
    out_min_xy = torch.minimum(qcorners[:, 0], gcorners[:, 0])

    # calculate area
    volume_pred_boxes = pred_boxes[:, 3] * pred_boxes[:, 4] * pred_boxes[:, 5]
    volume_gt_boxes = gt_boxes[:, 3] * gt_boxes[:, 4] * gt_boxes[:, 5]

    inter_h = torch.minimum(pred_boxes[:, 2] + 0.5 * pred_boxes[:, 5], gt_boxes[:, 2] + 0.5 * gt_boxes[:, 5]) - \
              torch.maximum(pred_boxes[:, 2] - 0.5 * pred_boxes[:, 5], gt_boxes[:, 2] - 0.5 * gt_boxes[:, 5])
    inter_h = torch.clamp(inter_h, min=0)

    inter = torch.clamp((inter_max_xy - inter_min_xy), min=0)
    volume_inter = inter[:, 0] * inter[:, 1] * inter_h
    volume_union = volume_gt_boxes + volume_pred_boxes - volume_inter

    # boxes_iou3d_gpu(pred_boxes, gt_boxes)
    inter_diag = torch.pow(gt_boxes[:, 0:3] - pred_boxes[:, 0:3], 2).sum(-1)

    outer_h = torch.maximum(gt_boxes[:, 2] + 0.5 * gt_boxes[:, 5], pred_boxes[:, 2] + 0.5 * pred_boxes[:, 5]) - \
              torch.minimum(gt_boxes[:, 2] - 0.5 * gt_boxes[:, 5], pred_boxes[:, 2] - 0.5 * pred_boxes[:, 5])
    outer_h = torch.clamp(outer_h, min=0)
    outer = torch.clamp((out_max_xy - out_min_xy), min=0)
    outer_diag = outer[:, 0] ** 2 + outer[:, 1] ** 2 + outer_h ** 2

    dious = volume_inter / volume_union - inter_diag / outer_diag
    dious = torch.clamp(dious, min=-1.0, max=1.0)

    return dious