File size: 10,588 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# DeepLabv3Plus-Pytorch
Pretrained DeepLabv3, DeepLabv3+ for Pascal VOC & Cityscapes.
## Quick Start
### 1. Available Architectures
| DeepLabV3 | DeepLabV3+ |
| :---: | :---: |
|deeplabv3_resnet50|deeplabv3plus_resnet50|
|deeplabv3_resnet101|deeplabv3plus_resnet101|
|deeplabv3_mobilenet|deeplabv3plus_mobilenet ||
|deeplabv3_hrnetv2_48 | deeplabv3plus_hrnetv2_48 |
|deeplabv3_hrnetv2_32 | deeplabv3plus_hrnetv2_32 |
|deeplabv3_xception | deeplabv3plus_xception |
please refer to [network/modeling.py](https://github.com/VainF/DeepLabV3Plus-Pytorch/blob/master/network/modeling.py) for all model entries.
Download pretrained models: [Dropbox](https://www.dropbox.com/sh/w3z9z8lqpi8b2w7/AAB0vkl4F5vy6HdIhmRCTKHSa?dl=0), [Tencent Weiyun](https://share.weiyun.com/qqx78Pv5)
Note: The HRNet backbone was contributed by @timothylimyl. A pre-trained backbone is available at [google drive](https://drive.google.com/file/d/1NxCK7Zgn5PmeS7W1jYLt5J9E0RRZ2oyF/view?usp=sharing).
### 2. Load the pretrained model:
```python
model = network.modeling.__dict__[MODEL_NAME](num_classes=NUM_CLASSES, output_stride=OUTPUT_SRTIDE)
model.load_state_dict( torch.load( PATH_TO_PTH )['model_state'] )
```
### 3. Visualize segmentation outputs:
```python
outputs = model(images)
preds = outputs.max(1)[1].detach().cpu().numpy()
colorized_preds = val_dst.decode_target(preds).astype('uint8') # To RGB images, (N, H, W, 3), ranged 0~255, numpy array
# Do whatever you like here with the colorized segmentation maps
colorized_preds = Image.fromarray(colorized_preds[0]) # to PIL Image
```
### 4. Atrous Separable Convolution
**Note**: All pre-trained models in this repo were trained without atrous separable convolution.
Atrous Separable Convolution is supported in this repo. We provide a simple tool ``network.convert_to_separable_conv`` to convert ``nn.Conv2d`` to ``AtrousSeparableConvolution``. **Please run main.py with '--separable_conv' if it is required**. See 'main.py' and 'network/_deeplab.py' for more details.
### 5. Prediction
Single image:
```bash
python predict.py --input datasets/data/cityscapes/leftImg8bit/train/bremen/bremen_000000_000019_leftImg8bit.png --dataset cityscapes --model deeplabv3plus_mobilenet --ckpt checkpoints/best_deeplabv3plus_mobilenet_cityscapes_os16.pth --save_val_results_to test_results
```
Image folder:
```bash
python predict.py --input datasets/data/cityscapes/leftImg8bit/train/bremen --dataset cityscapes --model deeplabv3plus_mobilenet --ckpt checkpoints/best_deeplabv3plus_mobilenet_cityscapes_os16.pth --save_val_results_to test_results
```
### 6. New backbones
Please refer to [this commit (Xception)](https://github.com/VainF/DeepLabV3Plus-Pytorch/commit/c4b51e435e32b0deba5fc7c8ff106293df90590d) for more details about how to add new backbones.
### 7. New datasets
You can train deeplab models on your own datasets. Your ``torch.utils.data.Dataset`` should provide a decoding method that transforms your predictions to colorized images, just like the [VOC Dataset](https://github.com/VainF/DeepLabV3Plus-Pytorch/blob/bfe01d5fca5b6bb648e162d522eed1a9a8b324cb/datasets/voc.py#L156):
```python
class MyDataset(data.Dataset):
...
@classmethod
def decode_target(cls, mask):
"""decode semantic mask to RGB image"""
return cls.cmap[mask]
```
## Results
### 1. Performance on Pascal VOC2012 Aug (21 classes, 513 x 513)
Training: 513x513 random crop
validation: 513x513 center crop
| Model | Batch Size | FLOPs | train/val OS | mIoU | Dropbox | Tencent Weiyun |
| :-------- | :-------------: | :----: | :-----------: | :--------: | :--------: | :----: |
| DeepLabV3-MobileNet | 16 | 6.0G | 16/16 | 0.701 | [Download](https://www.dropbox.com/s/uhksxwfcim3nkpo/best_deeplabv3_mobilenet_voc_os16.pth?dl=0) | [Download](https://share.weiyun.com/A4ubD1DD) |
| DeepLabV3-ResNet50 | 16 | 51.4G | 16/16 | 0.769 | [Download](https://www.dropbox.com/s/3eag5ojccwiexkq/best_deeplabv3_resnet50_voc_os16.pth?dl=0) | [Download](https://share.weiyun.com/33eLjnVL) |
| DeepLabV3-ResNet101 | 16 | 72.1G | 16/16 | 0.773 | [Download](https://www.dropbox.com/s/vtenndnsrnh4068/best_deeplabv3_resnet101_voc_os16.pth?dl=0) | [Download](https://share.weiyun.com/iCkzATAw) |
| DeepLabV3Plus-MobileNet | 16 | 17.0G | 16/16 | 0.711 | [Download](https://www.dropbox.com/s/0idrhwz6opaj7q4/best_deeplabv3plus_mobilenet_voc_os16.pth?dl=0) | [Download](https://share.weiyun.com/djX6MDwM) |
| DeepLabV3Plus-ResNet50 | 16 | 62.7G | 16/16 | 0.772 | [Download](https://www.dropbox.com/s/dgxyd3jkyz24voa/best_deeplabv3plus_resnet50_voc_os16.pth?dl=0) | [Download](https://share.weiyun.com/uTM4i2jG) |
| DeepLabV3Plus-ResNet101 | 16 | 83.4G | 16/16 | 0.783 | [Download](https://www.dropbox.com/s/bm3hxe7wmakaqc5/best_deeplabv3plus_resnet101_voc_os16.pth?dl=0) | [Download](https://share.weiyun.com/UNPZr3dk) |
### 2. Performance on Cityscapes (19 classes, 1024 x 2048)
Training: 768x768 random crop
validation: 1024x2048
| Model | Batch Size | FLOPs | train/val OS | mIoU | Dropbox | Tencent Weiyun |
| :-------- | :-------------: | :----: | :-----------: | :--------: | :--------: | :----: |
| DeepLabV3Plus-MobileNet | 16 | 135G | 16/16 | 0.721 | [Download](https://www.dropbox.com/s/753ojyvsh3vdjol/best_deeplabv3plus_mobilenet_cityscapes_os16.pth?dl=0) | [Download](https://share.weiyun.com/aSKjdpbL)
| DeepLabV3Plus-ResNet101 | 16 | N/A | 16/16 | 0.762 | [Download](https://drive.google.com/file/d/1t7TC8mxQaFECt4jutdq_NMnWxdm6B-Nb/view?usp=sharing) | N/A |
#### Segmentation Results on Pascal VOC2012 (DeepLabv3Plus-MobileNet)
<div>
<img src="samples/1_image.png" width="20%">
<img src="samples/1_target.png" width="20%">
<img src="samples/1_pred.png" width="20%">
<img src="samples/1_overlay.png" width="20%">
</div>
<div>
<img src="samples/23_image.png" width="20%">
<img src="samples/23_target.png" width="20%">
<img src="samples/23_pred.png" width="20%">
<img src="samples/23_overlay.png" width="20%">
</div>
<div>
<img src="samples/114_image.png" width="20%">
<img src="samples/114_target.png" width="20%">
<img src="samples/114_pred.png" width="20%">
<img src="samples/114_overlay.png" width="20%">
</div>
#### Segmentation Results on Cityscapes (DeepLabv3Plus-MobileNet)
<div>
<img src="samples/city_1_target.png" width="45%">
<img src="samples/city_1_overlay.png" width="45%">
</div>
<div>
<img src="samples/city_6_target.png" width="45%">
<img src="samples/city_6_overlay.png" width="45%">
</div>
#### Visualization of training

## Pascal VOC
### 1. Requirements
```bash
pip install -r requirements.txt
```
### 2. Prepare Datasets
#### 2.1 Standard Pascal VOC
You can run train.py with "--download" option to download and extract pascal voc dataset. The defaut path is './datasets/data':
```
/datasets
/data
/VOCdevkit
/VOC2012
/SegmentationClass
/JPEGImages
...
...
/VOCtrainval_11-May-2012.tar
...
```
#### 2.2 Pascal VOC trainaug (Recommended!!)
See chapter 4 of [2]
The original dataset contains 1464 (train), 1449 (val), and 1456 (test) pixel-level annotated images. We augment the dataset by the extra annotations provided by [76], resulting in 10582 (trainaug) training images. The performance is measured in terms of pixel intersection-over-union averaged across the 21 classes (mIOU).
*./datasets/data/train_aug.txt* includes the file names of 10582 trainaug images (val images are excluded). Please to download their labels from [Dropbox](https://www.dropbox.com/s/oeu149j8qtbs1x0/SegmentationClassAug.zip?dl=0) or [Tencent Weiyun](https://share.weiyun.com/5NmJ6Rk). Those labels come from [DrSleep's repo](https://github.com/DrSleep/tensorflow-deeplab-resnet).
Extract trainaug labels (SegmentationClassAug) to the VOC2012 directory.
```
/datasets
/data
/VOCdevkit
/VOC2012
/SegmentationClass
/SegmentationClassAug # <= the trainaug labels
/JPEGImages
...
...
/VOCtrainval_11-May-2012.tar
...
```
### 3. Training on Pascal VOC2012 Aug
#### 3.1 Visualize training (Optional)
Start visdom sever for visualization. Please remove '--enable_vis' if visualization is not needed.
```bash
# Run visdom server on port 28333
visdom -port 28333
```
#### 3.2 Training with OS=16
Run main.py with *"--year 2012_aug"* to train your model on Pascal VOC2012 Aug. You can also parallel your training on 4 GPUs with '--gpu_id 0,1,2,3'
**Note: There is no SyncBN in this repo, so training with *multple GPUs and small batch size* may degrades the performance. See [PyTorch-Encoding](https://hangzhang.org/PyTorch-Encoding/tutorials/syncbn.html) for more details about SyncBN**
```bash
python main.py --model deeplabv3plus_mobilenet --enable_vis --vis_port 28333 --gpu_id 0 --year 2012_aug --crop_val --lr 0.01 --crop_size 513 --batch_size 16 --output_stride 16
```
#### 3.3 Continue training
Run main.py with '--continue_training' to restore the state_dict of optimizer and scheduler from YOUR_CKPT.
```bash
python main.py ... --ckpt YOUR_CKPT --continue_training
```
#### 3.4. Testing
Results will be saved at ./results.
```bash
python main.py --model deeplabv3plus_mobilenet --enable_vis --vis_port 28333 --gpu_id 0 --year 2012_aug --crop_val --lr 0.01 --crop_size 513 --batch_size 16 --output_stride 16 --ckpt checkpoints/best_deeplabv3plus_mobilenet_voc_os16.pth --test_only --save_val_results
```
## Cityscapes
### 1. Download cityscapes and extract it to 'datasets/data/cityscapes'
```
/datasets
/data
/cityscapes
/gtFine
/leftImg8bit
```
### 2. Train your model on Cityscapes
```bash
python main.py --model deeplabv3plus_mobilenet --dataset cityscapes --enable_vis --vis_port 28333 --gpu_id 0 --lr 0.1 --crop_size 768 --batch_size 16 --output_stride 16 --data_root ./datasets/data/cityscapes
```
## Reference
[1] [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)
[2] [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1802.02611)
|