File size: 11,257 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import argparse
import os
import torch
from exp.exp_main import Exp_Main
import random
import json
import numpy as np
from torch.utils.tensorboard import SummaryWriter
import traceback
import pathlib
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

class moving_avg(nn.Module):
    """
    Moving average block to highlight the trend of time series
    """
    def __init__(self, kernel_size, stride):
        super(moving_avg, self).__init__()
        self.kernel_size = kernel_size
        self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0)

    def forward(self, x):
        # padding on the both ends of time series
        front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1)
        end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1)
        x = torch.cat([front, x, end], dim=1)
        x = self.avg(x.permute(0, 2, 1))
        x = x.permute(0, 2, 1)
        return x


class series_decomp(nn.Module):
    """
    Series decomposition block
    """
    def __init__(self, kernel_size):
        super(series_decomp, self).__init__()
        self.moving_avg = moving_avg(kernel_size, stride=1)

    def forward(self, x):
        moving_mean = self.moving_avg(x)
        res = x - moving_mean
        return res, moving_mean

class Model(nn.Module):
    """
    Decomposition-Linear
    """
    def __init__(self, configs):
        super(Model, self).__init__()
        self.seq_len = configs.seq_len
        self.pred_len = configs.pred_len

        # Decompsition Kernel Size
        kernel_size = 25
        self.decompsition = series_decomp(kernel_size)
        self.individual = configs.individual
        self.channels = configs.enc_in

        if self.individual:
            self.Linear_Seasonal = nn.ModuleList()
            self.Linear_Trend = nn.ModuleList()
            
            for i in range(self.channels):
                self.Linear_Seasonal.append(nn.Linear(self.seq_len,self.pred_len))
                self.Linear_Trend.append(nn.Linear(self.seq_len,self.pred_len))
        else:
            self.Linear_Seasonal = nn.Linear(self.seq_len,self.pred_len)
            self.Linear_Trend = nn.Linear(self.seq_len,self.pred_len)
    def forward(self, x):
        # x: [Batch, Input length, Channel]
        seasonal_init, trend_init = self.decompsition(x)
        seasonal_init, trend_init = seasonal_init.permute(0,2,1), trend_init.permute(0,2,1)
        if self.individual:
            seasonal_output = torch.zeros([seasonal_init.size(0),seasonal_init.size(1),self.pred_len],dtype=seasonal_init.dtype).to(seasonal_init.device)
            trend_output = torch.zeros([trend_init.size(0),trend_init.size(1),self.pred_len],dtype=trend_init.dtype).to(trend_init.device)
            for i in range(self.channels):
                seasonal_output[:,i,:] = self.Linear_Seasonal[i](seasonal_init[:,i,:])
                trend_output[:,i,:] = self.Linear_Trend[i](trend_init[:,i,:])
        else:
            seasonal_output = self.Linear_Seasonal(seasonal_init)
            trend_output = self.Linear_Trend(trend_init)

        x = seasonal_output + trend_output
        return x.permute(0,2,1) # to [Batch, Output length, Channel]


if __name__ == '__main__':
    fix_seed = 2021
    random.seed(fix_seed)
    torch.manual_seed(fix_seed)
    np.random.seed(fix_seed)

    parser = argparse.ArgumentParser(description='Autoformer & Transformer family for Time Series Forecasting')
    parser.add_argument("--out_dir", type=str, default="run_0")
    # basic config
    
    parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
    parser.add_argument('--train_only', type=bool, required=False, default=False, help='perform training on full input dataset without validation and testing')

    # data loader
    parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
    parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
    parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
    parser.add_argument('--features', type=str, default='M',
                        help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
    parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
    parser.add_argument('--freq', type=str, default='h',
                        help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
    parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')

    # forecasting task
    parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
    parser.add_argument('--label_len', type=int, default=48, help='start token length')
    parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')


    # DLinear
    parser.add_argument('--individual', action='store_true', default=False, help='DLinear: a linear layer for each variate(channel) individually')
    # Formers 
    parser.add_argument('--embed_type', type=int, default=0, help='0: default 1: value embedding + temporal embedding + positional embedding 2: value embedding + temporal embedding 3: value embedding + positional embedding 4: value embedding')
    parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') # DLinear with --individual, use this hyperparameter as the number of channels
    parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
    parser.add_argument('--c_out', type=int, default=7, help='output size')
    parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
    parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
    parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
    parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
    parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
    parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
    parser.add_argument('--factor', type=int, default=1, help='attn factor')
    parser.add_argument('--distil', action='store_false',
                        help='whether to use distilling in encoder, using this argument means not using distilling',
                        default=True)
    parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
    parser.add_argument('--embed', type=str, default='timeF',
                        help='time features encoding, options:[timeF, fixed, learned]')
    parser.add_argument('--activation', type=str, default='gelu', help='activation')
    parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
    parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')

    # optimization
    parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
    parser.add_argument('--itr', type=int, default=2, help='experiments times')
    parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
    parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
    parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
    parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
    parser.add_argument('--des', type=str, default='test', help='exp description')
    parser.add_argument('--loss', type=str, default='mse', help='loss function')
    parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
    parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)

    # GPU
    parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
    parser.add_argument('--gpu', type=int, default=0, help='gpu')
    parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
    parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
    parser.add_argument('--test_flop', action='store_true', default=False, help='See utils/tools for usage')

    args = parser.parse_args()
    try:
        log_dir = os.path.join(args.out_dir, 'logs')
        pathlib.Path(log_dir).mkdir(parents=True, exist_ok=True)
        writer = SummaryWriter(log_dir)
        args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False

        if args.use_gpu and args.use_multi_gpu:
            args.dvices = args.devices.replace(' ', '')
            device_ids = args.devices.split(',')
            args.device_ids = [int(id_) for id_ in device_ids]
            args.gpu = args.device_ids[0]

        print('Args in experiment:')
        print(args)
        mse,mae = [], []
        pred_lens = [96, 192, 336, 720] if args.data_path != 'illness.csv' else [24, 36, 48, 60]
        for pred_len in pred_lens:
            args.pred_len = pred_len
            model = Model(args)
            Exp = Exp_Main
            setting = '{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}'.format(
                args.data,
                args.features,
                args.seq_len,
                args.label_len,
                pred_len,
                args.d_model,
                args.n_heads,
                args.e_layers,
                args.d_layers,
                args.d_ff,
                args.factor,
                args.embed,
                args.distil,
                args.des)

            exp = Exp(args,model)  # set experiments
            print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
            exp.train(setting,writer)
            print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
            single_mae, single_mse = exp.test(setting)
            print('mse:{}, mae:{}'.format(single_mse, single_mae))
            mae.append(single_mae)
            mse.append(single_mse)
            torch.cuda.empty_cache()
        mean_mae = sum(mae) / len(mae)
        mean_mse = sum(mse) / len(mse)
        final_infos = {
            args.data :{
                "means":{
                    "mae": mean_mae,
                    "mse": mean_mse,
                }
            }
        }
        pathlib.Path(args.out_dir).mkdir(parents=True, exist_ok=True)
        # with open(os.path.join(args.out_dir, f"final_info_{args.data}.json"), "w") as f:
        with open(os.path.join(args.out_dir, f"final_info.json"), "w") as f:
            json.dump(final_infos, f) 
    
    except Exception as e:
        print("Original error in subprocess:", flush=True)
        traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
        raise