yxc97's picture
Upload folder using huggingface_hub
62a2f1c verified
import os.path as osp
import numpy as np
import torch
from pytorch_lightning.utilities import rank_zero_warn
from torch_geometric.data import Data, InMemoryDataset, download_url
from tqdm import tqdm
class MD17(InMemoryDataset):
"""
Machine learning of accurate energy-conserving molecular force fields (Chmiela et al. 2017)
This class provides functionality for loading MD trajectories from the original dataset, not the revised versions.
See http://www.quantum-machine.org/gdml/#datasets for details.
"""
raw_url = "http://www.quantum-machine.org/gdml/data/npz/"
molecule_files = dict(
aspirin="md17_aspirin.npz",
ethanol="md17_ethanol.npz",
malonaldehyde="md17_malonaldehyde.npz",
naphthalene="md17_naphthalene.npz",
salicylic_acid="md17_salicylic.npz",
toluene="md17_toluene.npz",
uracil="md17_uracil.npz",
)
available_molecules = list(molecule_files.keys())
def __init__(self, root, transform=None, pre_transform=None, dataset_arg=None):
assert dataset_arg is not None, (
"Please provide the desired comma separated molecule(s) through"
f"'dataset_arg'. Available molecules are {', '.join(MD17.available_molecules)} "
"or 'all' to train on the combined dataset."
)
if dataset_arg == "all":
dataset_arg = ",".join(MD17.available_molecules)
self.molecules = dataset_arg.split(",")
if len(self.molecules) > 1:
rank_zero_warn(
"MD17 molecules have different reference energies, "
"which is not accounted for during training."
)
super(MD17, self).__init__(osp.join(root, dataset_arg), transform, pre_transform)
self.offsets = [0]
self.data_all, self.slices_all = [], []
for path in self.processed_paths:
data, slices = torch.load(path)
self.data_all.append(data)
self.slices_all.append(slices)
self.offsets.append(len(slices[list(slices.keys())[0]]) - 1 + self.offsets[-1])
def len(self):
return sum(len(slices[list(slices.keys())[0]]) - 1 for slices in self.slices_all)
def get(self, idx):
data_idx = 0
while data_idx < len(self.data_all) - 1 and idx >= self.offsets[data_idx + 1]:
data_idx += 1
self.data = self.data_all[data_idx]
self.slices = self.slices_all[data_idx]
return super(MD17, self).get(idx - self.offsets[data_idx])
@property
def raw_file_names(self):
return [MD17.molecule_files[mol] for mol in self.molecules]
@property
def processed_file_names(self):
return [f"md17-{mol}.pt" for mol in self.molecules]
def download(self):
for file_name in self.raw_file_names:
download_url(MD17.raw_url + file_name, self.raw_dir)
def process(self):
for path, processed_path in zip(self.raw_paths, self.processed_paths):
data_npz = np.load(path)
z = torch.from_numpy(data_npz["z"]).long()
positions = torch.from_numpy(data_npz["R"]).float()
energies = torch.from_numpy(data_npz["E"]).float()
forces = torch.from_numpy(data_npz["F"]).float()
samples = []
for pos, y, dy in tqdm(zip(positions, energies, forces), total=energies.size(0)):
data = Data(z=z, pos=pos, y=y.unsqueeze(1), dy=dy)
if self.pre_filter is not None:
data = self.pre_filter(data)
if self.pre_transform is not None:
data = self.pre_transform(data)
samples.append(data)
data, slices = self.collate(samples)
torch.save((data, slices), processed_path)