|
from collections import defaultdict |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
import torch.utils.data as torch_data |
|
|
|
from ..utils import common_utils |
|
from .augmentor.data_augmentor import DataAugmentor |
|
from .processor.data_processor import DataProcessor |
|
from .processor.point_feature_encoder import PointFeatureEncoder |
|
|
|
|
|
class DatasetTemplate(torch_data.Dataset): |
|
def __init__(self, dataset_cfg=None, class_names=None, training=True, root_path=None, logger=None): |
|
super().__init__() |
|
self.dataset_cfg = dataset_cfg |
|
self.training = training |
|
self.class_names = class_names |
|
self.logger = logger |
|
self.root_path = root_path if root_path is not None else Path(self.dataset_cfg.DATA_PATH) |
|
self.logger = logger |
|
if self.dataset_cfg is None or class_names is None: |
|
return |
|
|
|
self.point_cloud_range = np.array(self.dataset_cfg.POINT_CLOUD_RANGE, dtype=np.float32) |
|
self.point_feature_encoder = PointFeatureEncoder( |
|
self.dataset_cfg.POINT_FEATURE_ENCODING, |
|
point_cloud_range=self.point_cloud_range |
|
) |
|
self.data_augmentor = DataAugmentor( |
|
self.root_path, self.dataset_cfg.DATA_AUGMENTOR, self.class_names, logger=self.logger |
|
) if self.training else None |
|
self.data_processor = DataProcessor( |
|
self.dataset_cfg.DATA_PROCESSOR, point_cloud_range=self.point_cloud_range, |
|
training=self.training, num_point_features=self.point_feature_encoder.num_point_features |
|
) |
|
|
|
self.grid_size = self.data_processor.grid_size |
|
self.voxel_size = self.data_processor.voxel_size |
|
self.total_epochs = 0 |
|
self._merge_all_iters_to_one_epoch = False |
|
|
|
if hasattr(self.data_processor, "depth_downsample_factor"): |
|
self.depth_downsample_factor = self.data_processor.depth_downsample_factor |
|
else: |
|
self.depth_downsample_factor = None |
|
|
|
@property |
|
def mode(self): |
|
return 'train' if self.training else 'test' |
|
|
|
def __getstate__(self): |
|
d = dict(self.__dict__) |
|
del d['logger'] |
|
return d |
|
|
|
def __setstate__(self, d): |
|
self.__dict__.update(d) |
|
|
|
def generate_prediction_dicts(self, batch_dict, pred_dicts, class_names, output_path=None): |
|
""" |
|
Args: |
|
batch_dict: |
|
frame_id: |
|
pred_dicts: list of pred_dicts |
|
pred_boxes: (N, 7 or 9), Tensor |
|
pred_scores: (N), Tensor |
|
pred_labels: (N), Tensor |
|
class_names: |
|
output_path: |
|
|
|
Returns: |
|
|
|
""" |
|
|
|
def get_template_prediction(num_samples): |
|
box_dim = 9 if self.dataset_cfg.get('TRAIN_WITH_SPEED', False) else 7 |
|
ret_dict = { |
|
'name': np.zeros(num_samples), 'score': np.zeros(num_samples), |
|
'boxes_lidar': np.zeros([num_samples, box_dim]), 'pred_labels': np.zeros(num_samples) |
|
} |
|
return ret_dict |
|
|
|
def generate_single_sample_dict(box_dict): |
|
pred_scores = box_dict['pred_scores'].cpu().numpy() |
|
pred_boxes = box_dict['pred_boxes'].cpu().numpy() |
|
pred_labels = box_dict['pred_labels'].cpu().numpy() |
|
pred_dict = get_template_prediction(pred_scores.shape[0]) |
|
if pred_scores.shape[0] == 0: |
|
return pred_dict |
|
|
|
pred_dict['name'] = np.array(class_names)[pred_labels - 1] |
|
pred_dict['score'] = pred_scores |
|
pred_dict['boxes_lidar'] = pred_boxes |
|
pred_dict['pred_labels'] = pred_labels |
|
|
|
return pred_dict |
|
|
|
annos = [] |
|
for index, box_dict in enumerate(pred_dicts): |
|
single_pred_dict = generate_single_sample_dict(box_dict) |
|
single_pred_dict['frame_id'] = batch_dict['frame_id'][index] |
|
if 'metadata' in batch_dict: |
|
single_pred_dict['metadata'] = batch_dict['metadata'][index] |
|
annos.append(single_pred_dict) |
|
|
|
return annos |
|
|
|
def merge_all_iters_to_one_epoch(self, merge=True, epochs=None): |
|
if merge: |
|
self._merge_all_iters_to_one_epoch = True |
|
self.total_epochs = epochs |
|
else: |
|
self._merge_all_iters_to_one_epoch = False |
|
|
|
def __len__(self): |
|
raise NotImplementedError |
|
|
|
def __getitem__(self, index): |
|
""" |
|
To support a custom dataset, implement this function to load the raw data (and labels), then transform them to |
|
the unified normative coordinate and call the function self.prepare_data() to process the data and send them |
|
to the model. |
|
|
|
Args: |
|
index: |
|
|
|
Returns: |
|
|
|
""" |
|
raise NotImplementedError |
|
|
|
def set_lidar_aug_matrix(self, data_dict): |
|
""" |
|
Get lidar augment matrix (4 x 4), which are used to recover orig point coordinates. |
|
""" |
|
lidar_aug_matrix = np.eye(4) |
|
if 'flip_y' in data_dict.keys(): |
|
flip_x = data_dict['flip_x'] |
|
flip_y = data_dict['flip_y'] |
|
if flip_x: |
|
lidar_aug_matrix[:3,:3] = np.array([[1, 0, 0], [0, -1, 0], [0, 0, 1]]) @ lidar_aug_matrix[:3,:3] |
|
if flip_y: |
|
lidar_aug_matrix[:3,:3] = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]]) @ lidar_aug_matrix[:3,:3] |
|
if 'noise_rot' in data_dict.keys(): |
|
noise_rot = data_dict['noise_rot'] |
|
lidar_aug_matrix[:3,:3] = common_utils.angle2matrix(torch.tensor(noise_rot)) @ lidar_aug_matrix[:3,:3] |
|
if 'noise_scale' in data_dict.keys(): |
|
noise_scale = data_dict['noise_scale'] |
|
lidar_aug_matrix[:3,:3] *= noise_scale |
|
if 'noise_translate' in data_dict.keys(): |
|
noise_translate = data_dict['noise_translate'] |
|
lidar_aug_matrix[:3,3:4] = noise_translate.T |
|
data_dict['lidar_aug_matrix'] = lidar_aug_matrix |
|
return data_dict |
|
|
|
def prepare_data(self, data_dict): |
|
""" |
|
Args: |
|
data_dict: |
|
points: optional, (N, 3 + C_in) |
|
gt_boxes: optional, (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...] |
|
gt_names: optional, (N), string |
|
... |
|
|
|
Returns: |
|
data_dict: |
|
frame_id: string |
|
points: (N, 3 + C_in) |
|
gt_boxes: optional, (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...] |
|
gt_names: optional, (N), string |
|
use_lead_xyz: bool |
|
voxels: optional (num_voxels, max_points_per_voxel, 3 + C) |
|
voxel_coords: optional (num_voxels, 3) |
|
voxel_num_points: optional (num_voxels) |
|
... |
|
""" |
|
if self.training: |
|
assert 'gt_boxes' in data_dict, 'gt_boxes should be provided for training' |
|
gt_boxes_mask = np.array([n in self.class_names for n in data_dict['gt_names']], dtype=np.bool_) |
|
|
|
if 'calib' in data_dict: |
|
calib = data_dict['calib'] |
|
data_dict = self.data_augmentor.forward( |
|
data_dict={ |
|
**data_dict, |
|
'gt_boxes_mask': gt_boxes_mask |
|
} |
|
) |
|
if 'calib' in data_dict: |
|
data_dict['calib'] = calib |
|
data_dict = self.set_lidar_aug_matrix(data_dict) |
|
if data_dict.get('gt_boxes', None) is not None: |
|
selected = common_utils.keep_arrays_by_name(data_dict['gt_names'], self.class_names) |
|
data_dict['gt_boxes'] = data_dict['gt_boxes'][selected] |
|
data_dict['gt_names'] = data_dict['gt_names'][selected] |
|
gt_classes = np.array([self.class_names.index(n) + 1 for n in data_dict['gt_names']], dtype=np.int32) |
|
gt_boxes = np.concatenate((data_dict['gt_boxes'], gt_classes.reshape(-1, 1).astype(np.float32)), axis=1) |
|
data_dict['gt_boxes'] = gt_boxes |
|
|
|
if data_dict.get('gt_boxes2d', None) is not None: |
|
data_dict['gt_boxes2d'] = data_dict['gt_boxes2d'][selected] |
|
|
|
if data_dict.get('points', None) is not None: |
|
data_dict = self.point_feature_encoder.forward(data_dict) |
|
|
|
data_dict = self.data_processor.forward( |
|
data_dict=data_dict |
|
) |
|
|
|
if self.training and len(data_dict['gt_boxes']) == 0: |
|
new_index = np.random.randint(self.__len__()) |
|
return self.__getitem__(new_index) |
|
|
|
data_dict.pop('gt_names', None) |
|
|
|
return data_dict |
|
|
|
@staticmethod |
|
def collate_batch(batch_list, _unused=False): |
|
data_dict = defaultdict(list) |
|
for cur_sample in batch_list: |
|
for key, val in cur_sample.items(): |
|
data_dict[key].append(val) |
|
batch_size = len(batch_list) |
|
ret = {} |
|
batch_size_ratio = 1 |
|
|
|
for key, val in data_dict.items(): |
|
try: |
|
if key in ['voxels', 'voxel_num_points', 'geometric_features', 'voxel_centers']: |
|
if isinstance(val[0], list): |
|
batch_size_ratio = len(val[0]) |
|
val = [i for item in val for i in item] |
|
try: |
|
ret[key] = np.concatenate(val, axis=0) |
|
except ValueError: |
|
|
|
print(f"Warning: Could not concatenate {key} due to shape mismatch. Skipping.") |
|
continue |
|
elif key in ['points', 'voxel_coords']: |
|
coors = [] |
|
if isinstance(val[0], list): |
|
val = [i for item in val for i in item] |
|
for i, coor in enumerate(val): |
|
coor_pad = np.pad(coor, ((0, 0), (1, 0)), mode='constant', constant_values=i) |
|
coors.append(coor_pad) |
|
ret[key] = np.concatenate(coors, axis=0) |
|
elif key in ['gt_boxes']: |
|
max_gt = max([len(x) for x in val]) |
|
batch_gt_boxes3d = np.zeros((batch_size, max_gt, val[0].shape[-1]), dtype=np.float32) |
|
for k in range(batch_size): |
|
batch_gt_boxes3d[k, :val[k].__len__(), :] = val[k] |
|
ret[key] = batch_gt_boxes3d |
|
|
|
elif key in ['roi_boxes']: |
|
max_gt = max([x.shape[1] for x in val]) |
|
batch_gt_boxes3d = np.zeros((batch_size, val[0].shape[0], max_gt, val[0].shape[-1]), dtype=np.float32) |
|
for k in range(batch_size): |
|
batch_gt_boxes3d[k,:, :val[k].shape[1], :] = val[k] |
|
ret[key] = batch_gt_boxes3d |
|
|
|
elif key in ['roi_scores', 'roi_labels']: |
|
max_gt = max([x.shape[1] for x in val]) |
|
batch_gt_boxes3d = np.zeros((batch_size, val[0].shape[0], max_gt), dtype=np.float32) |
|
for k in range(batch_size): |
|
batch_gt_boxes3d[k,:, :val[k].shape[1]] = val[k] |
|
ret[key] = batch_gt_boxes3d |
|
|
|
elif key in ['gt_boxes2d']: |
|
max_boxes = 0 |
|
max_boxes = max([len(x) for x in val]) |
|
batch_boxes2d = np.zeros((batch_size, max_boxes, val[0].shape[-1]), dtype=np.float32) |
|
for k in range(batch_size): |
|
if val[k].size > 0: |
|
batch_boxes2d[k, :val[k].__len__(), :] = val[k] |
|
ret[key] = batch_boxes2d |
|
elif key in ["images", "depth_maps"]: |
|
|
|
max_h = 0 |
|
max_w = 0 |
|
for image in val: |
|
max_h = max(max_h, image.shape[0]) |
|
max_w = max(max_w, image.shape[1]) |
|
|
|
|
|
images = [] |
|
for image in val: |
|
pad_h = common_utils.get_pad_params(desired_size=max_h, cur_size=image.shape[0]) |
|
pad_w = common_utils.get_pad_params(desired_size=max_w, cur_size=image.shape[1]) |
|
pad_width = (pad_h, pad_w) |
|
pad_value = 0 |
|
|
|
if key == "images": |
|
pad_width = (pad_h, pad_w, (0, 0)) |
|
elif key == "depth_maps": |
|
pad_width = (pad_h, pad_w) |
|
|
|
image_pad = np.pad(image, |
|
pad_width=pad_width, |
|
mode='constant', |
|
constant_values=pad_value) |
|
|
|
images.append(image_pad) |
|
ret[key] = np.stack(images, axis=0) |
|
elif key in ['calib']: |
|
ret[key] = val |
|
elif key in ["points_2d"]: |
|
max_len = max([len(_val) for _val in val]) |
|
pad_value = 0 |
|
points = [] |
|
for _points in val: |
|
pad_width = ((0, max_len-len(_points)), (0,0)) |
|
points_pad = np.pad(_points, |
|
pad_width=pad_width, |
|
mode='constant', |
|
constant_values=pad_value) |
|
points.append(points_pad) |
|
ret[key] = np.stack(points, axis=0) |
|
elif key in ['camera_imgs']: |
|
ret[key] = torch.stack([torch.stack(imgs,dim=0) for imgs in val],dim=0) |
|
else: |
|
ret[key] = np.stack(val, axis=0) |
|
except Exception as e: |
|
print(f'Error in collate_batch: key={key}, error={str(e)}') |
|
|
|
continue |
|
|
|
ret['batch_size'] = batch_size * batch_size_ratio |
|
return ret |
|
|