|
import json |
|
import os.path as osp |
|
from collections import defaultdict |
|
import cv2 |
|
import numpy as np |
|
|
|
class Octopus(object): |
|
""" |
|
dataset structure: |
|
- data_root |
|
- train_split.txt |
|
- val_split.txt |
|
- test_split.txt |
|
- |
|
""" |
|
camera_names = ['cam01', 'cam03', 'cam05', 'cam06', 'cam07', 'cam08', 'cam09'] |
|
camera_tags = ['top', 'top2', 'left_back', 'left_front', 'right_front', 'right_back', 'back'] |
|
|
|
def __init__(self, dataset_root): |
|
self.dataset_root = dataset_root |
|
self.data_root = osp.join(self.dataset_root, 'data') |
|
self._collect_basic_infos() |
|
|
|
@property |
|
def train_split_list(self): |
|
if not osp.isfile(osp.join(self.dataset_root, 'ImageSets', 'train_set.txt')): |
|
train_split_list = None |
|
else: |
|
train_split_list = set(map(lambda x: x.strip(), |
|
open(osp.join(self.data_root, 'train_set.txt')).readlines())) |
|
return train_split_list |
|
|
|
@property |
|
def val_split_list(self): |
|
if not osp.isfile(osp.join(self.dataset_root, 'ImageSets', 'val_set.txt')): |
|
val_split_list = None |
|
else: |
|
val_split_list = set(map(lambda x: x.strip(), |
|
open(osp.join(self.data_root, 'val_set.txt')).readlines())) |
|
return val_split_list |
|
|
|
@property |
|
def test_split_list(self): |
|
if not osp.isfile(osp.join(self.dataset_root, 'ImageSets', 'test_set.txt')): |
|
test_split_list = None |
|
else: |
|
test_split_list = set(map(lambda x: x.strip(), |
|
open(osp.join(self.data_root, 'test_set.txt')).readlines())) |
|
return test_split_list |
|
|
|
@property |
|
def raw_split_list(self): |
|
if not osp.isfile(osp.join(self.dataset_root, 'ImageSets', 'raw_set.txt')): |
|
raw_split_list = None |
|
else: |
|
raw_split_list = set(map(lambda x: x.strip(), |
|
open(osp.join(self.data_root, 'raw_set.txt')).readlines())) |
|
return raw_split_list |
|
|
|
def _find_split_name(self, seq_id): |
|
if seq_id in self.raw_split_list: |
|
return 'raw' |
|
if seq_id in self.train_split_list: |
|
return 'train' |
|
if seq_id in self.test_split_list: |
|
return 'test' |
|
if seq_id in self.val_split_list: |
|
return 'val' |
|
print("sequence id {} corresponding to no split".format(seq_id)) |
|
raise NotImplementedError |
|
|
|
def _collect_basic_infos(self): |
|
self.train_info = defaultdict(dict) |
|
if self.train_split_list is not None: |
|
for train_seq in self.train_split_list: |
|
anno_file_path = osp.join(self.data_root, train_seq, '{}.json'.format(train_seq)) |
|
if not osp.isfile(anno_file_path): |
|
print("no annotation file for sequence {}".format(train_seq)) |
|
raise FileNotFoundError |
|
anno_file = json.load(open(anno_file_path, 'r')) |
|
for frame_anno in anno_file['frames']: |
|
self.train_info[train_seq][frame_anno['frame_id']] = { |
|
'pose': frame_anno['pose'], |
|
'calib': anno_file['calib'], |
|
} |
|
|
|
def get_frame_anno(self, seq_id, frame_id): |
|
split_name = self._find_split_name(seq_id) |
|
frame_info = getattr(self, '{}_info'.format(split_name))[seq_id][frame_id] |
|
if 'anno' in frame_info: |
|
return frame_info['anno'] |
|
return None |
|
|
|
def load_point_cloud(self, seq_id, frame_id): |
|
bin_path = osp.join(self.data_root, seq_id, 'lidar_roof', '{}.bin'.format(frame_id)) |
|
points = np.fromfile(bin_path, dtype=np.float32).reshape(-1, 4) |
|
return points |
|
|
|
def load_image(self, seq_id, frame_id, cam_name): |
|
cam_path = osp.join(self.data_root, seq_id, cam_name, '{}.jpg'.format(frame_id)) |
|
img_buf = cv2.cvtColor(cv2.imread(cam_path), cv2.COLOR_BGR2RGB) |
|
return img_buf |
|
|
|
def project_lidar_to_image(self, seq_id, frame_id): |
|
points = self.load_point_cloud(seq_id, frame_id) |
|
|
|
split_name = self._find_split_name(seq_id) |
|
frame_info = getattr(self, '{}_info'.format(split_name))[seq_id][frame_id] |
|
points_img_dict = dict() |
|
for cam_name in self.__class__.camera_names: |
|
calib_info = frame_info['calib'][cam_name] |
|
cam_2_velo = calib_info['cam_to_velo'] |
|
cam_intri = calib_info['cam_intrinsic'] |
|
point_xyz = points[:, :3] |
|
points_homo = np.hstack( |
|
[point_xyz, np.ones(point_xyz.shape[0], dtype=np.float32).reshape((-1, 1))]) |
|
points_lidar = np.dot(points_homo, np.linalg.inv(cam_2_velo).T) |
|
mask = points_lidar[:, 2] > 0 |
|
points_lidar = points_lidar[mask] |
|
points_img = np.dot(points_lidar, cam_intri.T) |
|
points_img_dict[cam_name] = points_img |
|
return points_img_dict |
|
|
|
def undistort_image(self, seq_id, frame_id): |
|
pass |