yxc97's picture
Upload folder using huggingface_hub
62a2f1c verified
import _init_path
import argparse
import datetime
import glob
import os
import json
from pathlib import Path
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
from pcdet.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file
from pcdet.datasets import build_dataloader
from pcdet.models import build_network, model_fn_decorator
from pcdet.utils import common_utils
from train_utils.optimization import build_optimizer, build_scheduler
from train_utils.train_utils import train_model
from eval_utils import eval_utils
def parse_config():
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--cfg_file', type=str, default=None, help='specify the config for training')
parser.add_argument('--batch_size', type=int, default=None, required=False, help='batch size for training')
parser.add_argument('--epochs', type=int, default=None, required=False, help='number of epochs to train for')
parser.add_argument('--workers', type=int, default=4, help='number of workers for dataloader')
parser.add_argument('--extra_tag', type=str, default='default', help='extra tag for this experiment')
parser.add_argument('--ckpt', type=str, default=None, help='checkpoint to start from')
parser.add_argument('--pretrained_model', type=str, default=None, help='pretrained_model')
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none')
parser.add_argument('--tcp_port', type=int, default=18888, help='tcp port for distrbuted training')
parser.add_argument('--sync_bn', action='store_true', default=False, help='whether to use sync bn')
parser.add_argument('--fix_random_seed', action='store_true', default=False, help='')
parser.add_argument('--ckpt_save_interval', type=int, default=1, help='number of training epochs')
parser.add_argument('--local-rank', '--local_rank', type=int, default=None, help='local rank for distributed training')
parser.add_argument('--max_ckpt_save_num', type=int, default=30, help='max number of saved checkpoint')
parser.add_argument('--merge_all_iters_to_one_epoch', action='store_true', default=False, help='')
parser.add_argument('--set', dest='set_cfgs', default=None, nargs=argparse.REMAINDER,
help='set extra config keys if needed')
parser.add_argument('--max_waiting_mins', type=int, default=0, help='max waiting minutes')
parser.add_argument('--start_epoch', type=int, default=0, help='')
parser.add_argument('--num_epochs_to_eval', type=int, default=0, help='number of checkpoints to be evaluated')
parser.add_argument('--save_to_file', action='store_true', default=False, help='')
parser.add_argument('--use_tqdm_to_record', action='store_true', default=False, help='if True, the intermediate losses will not be logged to file, only tqdm will be used')
parser.add_argument('--logger_iter_interval', type=int, default=50, help='')
parser.add_argument('--ckpt_save_time_interval', type=int, default=300, help='in terms of seconds')
parser.add_argument('--wo_gpu_stat', action='store_true', help='')
parser.add_argument('--use_amp', action='store_true', help='use mix precision training')
parser.add_argument('--out_dir', type=str, default='run_0', help='path to save final info')
args = parser.parse_args()
cfg_from_yaml_file(args.cfg_file, cfg)
cfg.TAG = Path(args.cfg_file).stem
cfg.EXP_GROUP_PATH = '/'.join(args.cfg_file.split('/')[1:-1]) # remove 'cfgs' and 'xxxx.yaml'
args.use_amp = args.use_amp or cfg.OPTIMIZATION.get('USE_AMP', False)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs, cfg)
return args, cfg
def eval_model(model, test_loader, args, eval_output_dir, logger, epoch_id, dist_test=False):
model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=dist_test)
model.cuda()
eval_dict = eval_utils.eval_one_epoch(
cfg, args, model, test_loader, epoch_id, logger, dist_test=dist_test,
result_dir=eval_output_dir
)
print(eval_dict)
return eval_dict
def main():
args, cfg = parse_config()
if args.launcher == 'none':
dist_train = False
total_gpus = 1
else:
if args.local_rank is None:
args.local_rank = int(os.environ.get('LOCAL_RANK', '0'))
total_gpus, cfg.LOCAL_RANK = getattr(common_utils, 'init_dist_%s' % args.launcher)(
args.tcp_port, args.local_rank, backend='nccl'
)
dist_train = True
if args.batch_size is None:
args.batch_size = cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU
else:
assert args.batch_size % total_gpus == 0, 'Batch size should match the number of gpus'
args.batch_size = args.batch_size // total_gpus
args.epochs = cfg.OPTIMIZATION.NUM_EPOCHS if args.epochs is None else args.epochs
if args.fix_random_seed:
common_utils.set_random_seed(666 + cfg.LOCAL_RANK)
output_dir = cfg.ROOT_DIR / 'output' / cfg.EXP_GROUP_PATH / cfg.TAG / args.extra_tag
ckpt_dir = output_dir / 'ckpt'
output_dir.mkdir(parents=True, exist_ok=True)
ckpt_dir.mkdir(parents=True, exist_ok=True)
log_file = output_dir / ('train_%s.log' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S'))
logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK)
# log to file
logger.info('**********************Start logging**********************')
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys() else 'ALL'
logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list)
if dist_train:
logger.info('Training in distributed mode : total_batch_size: %d' % (total_gpus * args.batch_size))
else:
logger.info('Training with a single process')
for key, val in vars(args).items():
logger.info('{:16} {}'.format(key, val))
log_config_to_file(cfg, logger=logger)
if cfg.LOCAL_RANK == 0:
os.system('cp %s %s' % (args.cfg_file, output_dir))
tb_log = SummaryWriter(log_dir=str(output_dir / 'tensorboard')) if cfg.LOCAL_RANK == 0 else None
logger.info("----------- Create dataloader & network & optimizer -----------")
train_set, train_loader, train_sampler = build_dataloader(
dataset_cfg=cfg.DATA_CONFIG,
class_names=cfg.CLASS_NAMES,
batch_size=args.batch_size,
dist=dist_train, workers=args.workers,
logger=logger,
training=True,
merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch,
total_epochs=args.epochs,
seed=666 if args.fix_random_seed else None
)
model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=train_set)
if args.sync_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model.cuda()
optimizer = build_optimizer(model, cfg.OPTIMIZATION)
# load checkpoint if it is possible
start_epoch = it = 0
last_epoch = -1
if args.pretrained_model is not None:
model.load_params_from_file(filename=args.pretrained_model, to_cpu=dist_train, logger=logger)
if args.ckpt is not None:
it, start_epoch = model.load_params_with_optimizer(args.ckpt, to_cpu=dist_train, optimizer=optimizer, logger=logger)
last_epoch = start_epoch + 1
else:
ckpt_list = glob.glob(str(ckpt_dir / '*.pth'))
if len(ckpt_list) > 0:
ckpt_list.sort(key=os.path.getmtime)
while len(ckpt_list) > 0:
try:
it, start_epoch = model.load_params_with_optimizer(
ckpt_list[-1], to_cpu=dist_train, optimizer=optimizer, logger=logger
)
last_epoch = start_epoch + 1
break
except:
ckpt_list = ckpt_list[:-1]
model.train() # before wrap to DistributedDataParallel to support fixed some parameters
if dist_train:
model = nn.parallel.DistributedDataParallel(model, device_ids=[cfg.LOCAL_RANK % torch.cuda.device_count()])
logger.info(f'----------- Model {cfg.MODEL.NAME} created, param count: {sum([m.numel() for m in model.parameters()])} -----------')
logger.info(model)
lr_scheduler, lr_warmup_scheduler = build_scheduler(
optimizer, total_iters_each_epoch=len(train_loader), total_epochs=args.epochs,
last_epoch=last_epoch, optim_cfg=cfg.OPTIMIZATION
)
# -----------------------start training---------------------------
logger.info('**********************Start training %s/%s(%s)**********************'
% (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))
train_model(
model,
optimizer,
train_loader,
model_func=model_fn_decorator(),
lr_scheduler=lr_scheduler,
optim_cfg=cfg.OPTIMIZATION,
start_epoch=start_epoch,
total_epochs=args.epochs,
start_iter=it,
rank=cfg.LOCAL_RANK,
tb_log=tb_log,
ckpt_save_dir=ckpt_dir,
train_sampler=train_sampler,
lr_warmup_scheduler=lr_warmup_scheduler,
ckpt_save_interval=args.ckpt_save_interval,
max_ckpt_save_num=args.max_ckpt_save_num,
merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch,
logger=logger,
logger_iter_interval=args.logger_iter_interval,
ckpt_save_time_interval=args.ckpt_save_time_interval,
use_logger_to_record=not args.use_tqdm_to_record,
show_gpu_stat=not args.wo_gpu_stat,
use_amp=args.use_amp,
cfg=cfg
)
if hasattr(train_set, 'use_shared_memory') and train_set.use_shared_memory:
train_set.clean_shared_memory()
logger.info('**********************End training %s/%s(%s)**********************\n\n\n'
% (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))
if cfg.LOCAL_RANK == 0:
logger.info('**********************Start evaluation %s/%s(%s)**********************' %
(cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))
test_set, test_loader, sampler = build_dataloader(
dataset_cfg=cfg.DATA_CONFIG,
class_names=cfg.CLASS_NAMES,
batch_size=args.batch_size,
dist=False, workers=args.workers, logger=logger, training=False
)
eval_output_dir = output_dir / 'eval' / 'eval_with_train'
eval_output_dir.mkdir(parents=True, exist_ok=True)
args.eval_epoch = max(args.epochs - args.num_epochs_to_eval, 0) # Only evaluate the last args.num_epochs_to_eval epochs
# print(args.out_dir)
if not os.path.exists(args.out_dir):
os.makedirs(args.out_dir)
eval_ckpt = os.path.join(ckpt_dir, f"checkpoint_epoch_{args.eval_epoch}.pth")
print(eval_ckpt)
args.ckpt = eval_ckpt
result_dict = eval_model(
model.module if dist_train else model,
test_loader, args, eval_output_dir, logger, args.eval_epoch, dist_test=False
)
print(result_dict.keys())
final_infos = {
"Once": {
"means": {
"mAP": result_dict['AP_mean/overall'],
"mAP_vehicle": result_dict['AP_Vehicle/overall'],
"mAP_pedestrian": result_dict['AP_Pedestrian/overall'],
"mAP_cyclist": result_dict['AP_Cyclist/overall']
}
}
}
if not os.path.exists(args.out_dir): os.makedirs(args.out_dir)
with open(os.path.join(args.out_dir, 'final_info.json'), 'w') as f:
json.dump(final_infos, f, indent=4)
logger.info('**********************End evaluation %s/%s(%s)**********************' %
(cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))
if __name__ == '__main__':
main()