|
import os |
|
import numpy as np |
|
import pandas as pd |
|
import os |
|
import torch |
|
from torch.utils.data import Dataset, DataLoader |
|
from sklearn.preprocessing import StandardScaler |
|
from utils.timefeatures import time_features |
|
import warnings |
|
|
|
warnings.filterwarnings('ignore') |
|
|
|
|
|
class Dataset_ETT_hour(Dataset): |
|
def __init__(self, root_path, flag='train', size=None, |
|
features='S', data_path='ETTh1.csv', |
|
target='OT', scale=True, timeenc=0, freq='h', train_only=False): |
|
|
|
|
|
if size == None: |
|
self.seq_len = 24 * 4 * 4 |
|
self.label_len = 24 * 4 |
|
self.pred_len = 24 * 4 |
|
else: |
|
self.seq_len = size[0] |
|
self.label_len = size[1] |
|
self.pred_len = size[2] |
|
|
|
assert flag in ['train', 'test', 'val'] |
|
type_map = {'train': 0, 'val': 1, 'test': 2} |
|
self.set_type = type_map[flag] |
|
|
|
self.features = features |
|
self.target = target |
|
self.scale = scale |
|
self.timeenc = timeenc |
|
self.freq = freq |
|
|
|
self.root_path = root_path |
|
self.data_path = data_path |
|
self.__read_data__() |
|
|
|
def __read_data__(self): |
|
self.scaler = StandardScaler() |
|
df_raw = pd.read_csv(os.path.join(self.root_path, |
|
self.data_path)) |
|
|
|
border1s = [0, 12 * 30 * 24 - self.seq_len, 12 * 30 * 24 + 4 * 30 * 24 - self.seq_len] |
|
border2s = [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24, 12 * 30 * 24 + 8 * 30 * 24] |
|
border1 = border1s[self.set_type] |
|
border2 = border2s[self.set_type] |
|
|
|
if self.features == 'M' or self.features == 'MS': |
|
cols_data = df_raw.columns[1:] |
|
df_data = df_raw[cols_data] |
|
elif self.features == 'S': |
|
df_data = df_raw[[self.target]] |
|
|
|
if self.scale: |
|
train_data = df_data[border1s[0]:border2s[0]] |
|
self.scaler.fit(train_data.values) |
|
data = self.scaler.transform(df_data.values) |
|
else: |
|
data = df_data.values |
|
|
|
df_stamp = df_raw[['date']][border1:border2] |
|
df_stamp['date'] = pd.to_datetime(df_stamp.date) |
|
if self.timeenc == 0: |
|
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1) |
|
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1) |
|
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1) |
|
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1) |
|
data_stamp = df_stamp.drop(['date'], 1).values |
|
elif self.timeenc == 1: |
|
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) |
|
data_stamp = data_stamp.transpose(1, 0) |
|
|
|
self.data_x = data[border1:border2] |
|
self.data_y = data[border1:border2] |
|
self.data_stamp = data_stamp |
|
|
|
def __getitem__(self, index): |
|
s_begin = index |
|
s_end = s_begin + self.seq_len |
|
r_begin = s_end - self.label_len |
|
r_end = r_begin + self.label_len + self.pred_len |
|
|
|
seq_x = self.data_x[s_begin:s_end] |
|
seq_y = self.data_y[r_begin:r_end] |
|
seq_x_mark = self.data_stamp[s_begin:s_end] |
|
seq_y_mark = self.data_stamp[r_begin:r_end] |
|
|
|
return seq_x, seq_y, seq_x_mark, seq_y_mark |
|
|
|
def __len__(self): |
|
return len(self.data_x) - self.seq_len - self.pred_len + 1 |
|
|
|
def inverse_transform(self, data): |
|
return self.scaler.inverse_transform(data) |
|
|
|
|
|
class Dataset_ETT_minute(Dataset): |
|
def __init__(self, root_path, flag='train', size=None, |
|
features='S', data_path='ETTm1.csv', |
|
target='OT', scale=True, timeenc=0, freq='t', train_only=False): |
|
|
|
|
|
if size == None: |
|
self.seq_len = 24 * 4 * 4 |
|
self.label_len = 24 * 4 |
|
self.pred_len = 24 * 4 |
|
else: |
|
self.seq_len = size[0] |
|
self.label_len = size[1] |
|
self.pred_len = size[2] |
|
|
|
assert flag in ['train', 'test', 'val'] |
|
type_map = {'train': 0, 'val': 1, 'test': 2} |
|
self.set_type = type_map[flag] |
|
|
|
self.features = features |
|
self.target = target |
|
self.scale = scale |
|
self.timeenc = timeenc |
|
self.freq = freq |
|
|
|
self.root_path = root_path |
|
self.data_path = data_path |
|
self.__read_data__() |
|
|
|
def __read_data__(self): |
|
self.scaler = StandardScaler() |
|
df_raw = pd.read_csv(os.path.join(self.root_path, |
|
self.data_path)) |
|
|
|
border1s = [0, 12 * 30 * 24 * 4 - self.seq_len, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4 - self.seq_len] |
|
border2s = [12 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4] |
|
border1 = border1s[self.set_type] |
|
border2 = border2s[self.set_type] |
|
|
|
if self.features == 'M' or self.features == 'MS': |
|
cols_data = df_raw.columns[1:] |
|
df_data = df_raw[cols_data] |
|
elif self.features == 'S': |
|
df_data = df_raw[[self.target]] |
|
|
|
if self.scale: |
|
train_data = df_data[border1s[0]:border2s[0]] |
|
self.scaler.fit(train_data.values) |
|
data = self.scaler.transform(df_data.values) |
|
else: |
|
data = df_data.values |
|
|
|
df_stamp = df_raw[['date']][border1:border2] |
|
df_stamp['date'] = pd.to_datetime(df_stamp.date) |
|
if self.timeenc == 0: |
|
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1) |
|
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1) |
|
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1) |
|
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1) |
|
df_stamp['minute'] = df_stamp.date.apply(lambda row: row.minute, 1) |
|
df_stamp['minute'] = df_stamp.minute.map(lambda x: x // 15) |
|
data_stamp = df_stamp.drop(['date'], 1).values |
|
elif self.timeenc == 1: |
|
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) |
|
data_stamp = data_stamp.transpose(1, 0) |
|
|
|
self.data_x = data[border1:border2] |
|
self.data_y = data[border1:border2] |
|
self.data_stamp = data_stamp |
|
|
|
def __getitem__(self, index): |
|
s_begin = index |
|
s_end = s_begin + self.seq_len |
|
r_begin = s_end - self.label_len |
|
r_end = r_begin + self.label_len + self.pred_len |
|
|
|
seq_x = self.data_x[s_begin:s_end] |
|
seq_y = self.data_y[r_begin:r_end] |
|
seq_x_mark = self.data_stamp[s_begin:s_end] |
|
seq_y_mark = self.data_stamp[r_begin:r_end] |
|
|
|
return seq_x, seq_y, seq_x_mark, seq_y_mark |
|
|
|
def __len__(self): |
|
return len(self.data_x) - self.seq_len - self.pred_len + 1 |
|
|
|
def inverse_transform(self, data): |
|
return self.scaler.inverse_transform(data) |
|
|
|
|
|
class Dataset_Custom(Dataset): |
|
def __init__(self, root_path, flag='train', size=None, |
|
features='S', data_path='ETTh1.csv', |
|
target='OT', scale=True, timeenc=0, freq='h', train_only=False): |
|
|
|
|
|
if size == None: |
|
self.seq_len = 24 * 4 * 4 |
|
self.label_len = 24 * 4 |
|
self.pred_len = 24 * 4 |
|
else: |
|
self.seq_len = size[0] |
|
self.label_len = size[1] |
|
self.pred_len = size[2] |
|
|
|
assert flag in ['train', 'test', 'val'] |
|
type_map = {'train': 0, 'val': 1, 'test': 2} |
|
self.set_type = type_map[flag] |
|
|
|
self.features = features |
|
self.target = target |
|
self.scale = scale |
|
self.timeenc = timeenc |
|
self.freq = freq |
|
self.train_only = train_only |
|
|
|
self.root_path = root_path |
|
self.data_path = data_path |
|
self.__read_data__() |
|
|
|
def __read_data__(self): |
|
self.scaler = StandardScaler() |
|
df_raw = pd.read_csv(os.path.join(self.root_path, |
|
self.data_path)) |
|
|
|
''' |
|
df_raw.columns: ['date', ...(other features), target feature] |
|
''' |
|
cols = list(df_raw.columns) |
|
if self.features == 'S': |
|
cols.remove(self.target) |
|
cols.remove('date') |
|
|
|
num_train = int(len(df_raw) * (0.7 if not self.train_only else 1)) |
|
num_test = int(len(df_raw) * 0.2) |
|
num_vali = len(df_raw) - num_train - num_test |
|
border1s = [0, num_train - self.seq_len, len(df_raw) - num_test - self.seq_len] |
|
border2s = [num_train, num_train + num_vali, len(df_raw)] |
|
border1 = border1s[self.set_type] |
|
border2 = border2s[self.set_type] |
|
|
|
if self.features == 'M' or self.features == 'MS': |
|
df_raw = df_raw[['date'] + cols] |
|
cols_data = df_raw.columns[1:] |
|
df_data = df_raw[cols_data] |
|
elif self.features == 'S': |
|
df_raw = df_raw[['date'] + cols + [self.target]] |
|
df_data = df_raw[[self.target]] |
|
|
|
if self.scale: |
|
train_data = df_data[border1s[0]:border2s[0]] |
|
self.scaler.fit(train_data.values) |
|
|
|
|
|
data = self.scaler.transform(df_data.values) |
|
else: |
|
data = df_data.values |
|
|
|
df_stamp = df_raw[['date']][border1:border2] |
|
df_stamp['date'] = pd.to_datetime(df_stamp.date) |
|
if self.timeenc == 0: |
|
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1) |
|
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1) |
|
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1) |
|
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1) |
|
data_stamp = df_stamp.drop(['date'], 1).values |
|
elif self.timeenc == 1: |
|
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) |
|
data_stamp = data_stamp.transpose(1, 0) |
|
|
|
self.data_x = data[border1:border2] |
|
self.data_y = data[border1:border2] |
|
self.data_stamp = data_stamp |
|
|
|
def __getitem__(self, index): |
|
s_begin = index |
|
s_end = s_begin + self.seq_len |
|
r_begin = s_end - self.label_len |
|
r_end = r_begin + self.label_len + self.pred_len |
|
|
|
seq_x = self.data_x[s_begin:s_end] |
|
seq_y = self.data_y[r_begin:r_end] |
|
seq_x_mark = self.data_stamp[s_begin:s_end] |
|
seq_y_mark = self.data_stamp[r_begin:r_end] |
|
|
|
return seq_x, seq_y, seq_x_mark, seq_y_mark |
|
|
|
def __len__(self): |
|
return len(self.data_x) - self.seq_len - self.pred_len + 1 |
|
|
|
def inverse_transform(self, data): |
|
return self.scaler.inverse_transform(data) |
|
|
|
|
|
class Dataset_Pred(Dataset): |
|
def __init__(self, root_path, flag='pred', size=None, |
|
features='S', data_path='ETTh1.csv', |
|
target='OT', scale=True, inverse=False, timeenc=0, freq='15min', cols=None, train_only=False): |
|
|
|
|
|
if size == None: |
|
self.seq_len = 24 * 4 * 4 |
|
self.label_len = 24 * 4 |
|
self.pred_len = 24 * 4 |
|
else: |
|
self.seq_len = size[0] |
|
self.label_len = size[1] |
|
self.pred_len = size[2] |
|
|
|
assert flag in ['pred'] |
|
|
|
self.features = features |
|
self.target = target |
|
self.scale = scale |
|
self.inverse = inverse |
|
self.timeenc = timeenc |
|
self.freq = freq |
|
self.cols = cols |
|
self.root_path = root_path |
|
self.data_path = data_path |
|
self.__read_data__() |
|
|
|
def __read_data__(self): |
|
self.scaler = StandardScaler() |
|
df_raw = pd.read_csv(os.path.join(self.root_path, |
|
self.data_path)) |
|
''' |
|
df_raw.columns: ['date', ...(other features), target feature] |
|
''' |
|
if self.cols: |
|
cols = self.cols.copy() |
|
else: |
|
cols = list(df_raw.columns) |
|
self.cols = cols.copy() |
|
cols.remove('date') |
|
if self.features == 'S': |
|
cols.remove(self.target) |
|
border1 = len(df_raw) - self.seq_len |
|
border2 = len(df_raw) |
|
|
|
if self.features == 'M' or self.features == 'MS': |
|
df_raw = df_raw[['date'] + cols] |
|
cols_data = df_raw.columns[1:] |
|
df_data = df_raw[cols_data] |
|
elif self.features == 'S': |
|
df_raw = df_raw[['date'] + cols + [self.target]] |
|
df_data = df_raw[[self.target]] |
|
|
|
if self.scale: |
|
self.scaler.fit(df_data.values) |
|
data = self.scaler.transform(df_data.values) |
|
else: |
|
data = df_data.values |
|
|
|
tmp_stamp = df_raw[['date']][border1:border2] |
|
tmp_stamp['date'] = pd.to_datetime(tmp_stamp.date) |
|
pred_dates = pd.date_range(tmp_stamp.date.values[-1], periods=self.pred_len + 1, freq=self.freq) |
|
|
|
df_stamp = pd.DataFrame(columns=['date']) |
|
df_stamp.date = list(tmp_stamp.date.values) + list(pred_dates[1:]) |
|
self.future_dates = list(pred_dates[1:]) |
|
if self.timeenc == 0: |
|
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1) |
|
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1) |
|
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1) |
|
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1) |
|
df_stamp['minute'] = df_stamp.date.apply(lambda row: row.minute, 1) |
|
df_stamp['minute'] = df_stamp.minute.map(lambda x: x // 15) |
|
data_stamp = df_stamp.drop(['date'], 1).values |
|
elif self.timeenc == 1: |
|
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) |
|
data_stamp = data_stamp.transpose(1, 0) |
|
|
|
self.data_x = data[border1:border2] |
|
if self.inverse: |
|
self.data_y = df_data.values[border1:border2] |
|
else: |
|
self.data_y = data[border1:border2] |
|
self.data_stamp = data_stamp |
|
|
|
def __getitem__(self, index): |
|
s_begin = index |
|
s_end = s_begin + self.seq_len |
|
r_begin = s_end - self.label_len |
|
r_end = r_begin + self.label_len + self.pred_len |
|
|
|
seq_x = self.data_x[s_begin:s_end] |
|
if self.inverse: |
|
seq_y = self.data_x[r_begin:r_begin + self.label_len] |
|
else: |
|
seq_y = self.data_y[r_begin:r_begin + self.label_len] |
|
seq_x_mark = self.data_stamp[s_begin:s_end] |
|
seq_y_mark = self.data_stamp[r_begin:r_end] |
|
|
|
return seq_x, seq_y, seq_x_mark, seq_y_mark |
|
|
|
def __len__(self): |
|
return len(self.data_x) - self.seq_len + 1 |
|
|
|
def inverse_transform(self, data): |
|
return self.scaler.inverse_transform(data) |
|
|