|
from data_provider.data_factory import data_provider |
|
from utils.tools import EarlyStopping, adjust_learning_rate, visual, test_params_flop |
|
from utils.metrics import metric |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
import torch.nn as nn |
|
from torch import optim |
|
|
|
import os |
|
import time |
|
|
|
import warnings |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
warnings.filterwarnings('ignore') |
|
|
|
class Exp_Main(object): |
|
def __init__(self, args,model): |
|
self.args = args |
|
self.device = self._acquire_device() |
|
self.model = model.to(self.device) |
|
if self.args.use_multi_gpu and self.args.use_gpu: |
|
model = nn.DataParallel(model, device_ids=self.args.device_ids) |
|
|
|
def _acquire_device(self): |
|
if self.args.use_gpu: |
|
os.environ["CUDA_VISIBLE_DEVICES"] = str( |
|
self.args.gpu) if not self.args.use_multi_gpu else self.args.devices |
|
device = torch.device('cuda:{}'.format(self.args.gpu)) |
|
print('Use GPU: cuda:{}'.format(self.args.gpu)) |
|
else: |
|
device = torch.device('cpu') |
|
print('Use CPU') |
|
return device |
|
|
|
def _get_data(self, flag): |
|
data_set, data_loader = data_provider(self.args, flag) |
|
return data_set, data_loader |
|
|
|
def _select_optimizer(self): |
|
model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate) |
|
return model_optim |
|
|
|
def _select_criterion(self): |
|
criterion = nn.MSELoss() |
|
return criterion |
|
|
|
def vali(self, vali_data, vali_loader, criterion): |
|
total_loss = [] |
|
self.model.eval() |
|
with torch.no_grad(): |
|
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(vali_loader): |
|
batch_x = batch_x.float().to(self.device) |
|
batch_y = batch_y.float() |
|
|
|
batch_x_mark = batch_x_mark.float().to(self.device) |
|
batch_y_mark = batch_y_mark.float().to(self.device) |
|
|
|
|
|
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float() |
|
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device) |
|
|
|
if self.args.use_amp: |
|
with torch.cuda.amp.autocast(): |
|
outputs = self.model(batch_x) |
|
|
|
else: |
|
outputs = self.model(batch_x) |
|
|
|
f_dim = -1 if self.args.features == 'MS' else 0 |
|
outputs = outputs[:, -self.args.pred_len:, f_dim:] |
|
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) |
|
|
|
pred = outputs.detach().cpu() |
|
true = batch_y.detach().cpu() |
|
|
|
loss = criterion(pred, true) |
|
|
|
total_loss.append(loss) |
|
total_loss = np.average(total_loss) |
|
self.model.train() |
|
return total_loss |
|
|
|
def train(self, setting, writer): |
|
train_data, train_loader = self._get_data(flag='train') |
|
if not self.args.train_only: |
|
vali_data, vali_loader = self._get_data(flag='val') |
|
test_data, test_loader = self._get_data(flag='test') |
|
|
|
path = os.path.join(self.args.checkpoints, setting) |
|
if not os.path.exists(path): |
|
os.makedirs(path) |
|
|
|
time_now = time.time() |
|
|
|
train_steps = len(train_loader) |
|
early_stopping = EarlyStopping(patience=self.args.patience, verbose=True) |
|
|
|
model_optim = self._select_optimizer() |
|
criterion = self._select_criterion() |
|
|
|
if self.args.use_amp: |
|
scaler = torch.cuda.amp.GradScaler() |
|
|
|
for epoch in range(self.args.train_epochs): |
|
iter_count = 0 |
|
train_loss = [] |
|
|
|
self.model.train() |
|
epoch_time = time.time() |
|
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader): |
|
iter_count += 1 |
|
model_optim.zero_grad() |
|
batch_x = batch_x.float().to(self.device) |
|
|
|
batch_y = batch_y.float().to(self.device) |
|
batch_x_mark = batch_x_mark.float().to(self.device) |
|
batch_y_mark = batch_y_mark.float().to(self.device) |
|
|
|
|
|
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float() |
|
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device) |
|
|
|
|
|
if self.args.use_amp: |
|
with torch.cuda.amp.autocast(): |
|
|
|
outputs = self.model(batch_x) |
|
|
|
|
|
f_dim = -1 if self.args.features == 'MS' else 0 |
|
outputs = outputs[:, -self.args.pred_len:, f_dim:] |
|
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) |
|
loss = criterion(outputs, batch_y) |
|
train_loss.append(loss.item()) |
|
else: |
|
|
|
outputs = self.model(batch_x) |
|
|
|
f_dim = -1 if self.args.features == 'MS' else 0 |
|
outputs = outputs[:, -self.args.pred_len:, f_dim:] |
|
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) |
|
loss = criterion(outputs, batch_y) |
|
train_loss.append(loss.item()) |
|
|
|
if (i + 1) % 100 == 0: |
|
print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item())) |
|
speed = (time.time() - time_now) / iter_count |
|
left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i) |
|
print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time)) |
|
iter_count = 0 |
|
time_now = time.time() |
|
|
|
if self.args.use_amp: |
|
scaler.scale(loss).backward() |
|
scaler.step(model_optim) |
|
scaler.update() |
|
else: |
|
loss.backward() |
|
model_optim.step() |
|
|
|
print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time)) |
|
train_loss = np.average(train_loss) |
|
vali_loss = self.vali(vali_data, vali_loader, criterion) |
|
test_loss = self.vali(test_data, test_loader, criterion) |
|
print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format( |
|
epoch + 1, train_steps, train_loss, vali_loss, test_loss)) |
|
writer.add_scalar("Loss/Train", train_loss, epoch) |
|
writer.add_scalar("Loss/Validation", vali_loss, epoch) |
|
writer.add_scalar("Loss/Test", test_loss, epoch) |
|
early_stopping(vali_loss, self.model, path) |
|
|
|
if early_stopping.early_stop: |
|
print("Early stopping") |
|
break |
|
|
|
adjust_learning_rate(model_optim, epoch + 1, self.args) |
|
|
|
best_model_path = path + '/' + 'checkpoint.pth' |
|
self.model.load_state_dict(torch.load(best_model_path)) |
|
|
|
return self.model |
|
|
|
def test(self, setting, test=0): |
|
test_data, test_loader = self._get_data(flag='test') |
|
|
|
if test: |
|
print('loading model') |
|
self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth'))) |
|
|
|
preds = [] |
|
trues = [] |
|
inputx = [] |
|
folder_path = './test_results/' + setting + '/' |
|
if not os.path.exists(folder_path): |
|
os.makedirs(folder_path) |
|
|
|
self.model.eval() |
|
with torch.no_grad(): |
|
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(test_loader): |
|
batch_x = batch_x.float().to(self.device) |
|
batch_y = batch_y.float().to(self.device) |
|
|
|
batch_x_mark = batch_x_mark.float().to(self.device) |
|
batch_y_mark = batch_y_mark.float().to(self.device) |
|
|
|
|
|
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float() |
|
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device) |
|
|
|
if self.args.use_amp: |
|
with torch.cuda.amp.autocast(): |
|
outputs = self.model(batch_x) |
|
|
|
else: |
|
outputs = self.model(batch_x) |
|
|
|
|
|
f_dim = -1 if self.args.features == 'MS' else 0 |
|
|
|
outputs = outputs[:, -self.args.pred_len:, f_dim:] |
|
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) |
|
outputs = outputs.detach().cpu().numpy() |
|
batch_y = batch_y.detach().cpu().numpy() |
|
|
|
pred = outputs |
|
true = batch_y |
|
|
|
preds.append(pred) |
|
trues.append(true) |
|
inputx.append(batch_x.detach().cpu().numpy()) |
|
if i % 20 == 0: |
|
input = batch_x.detach().cpu().numpy() |
|
gt = np.concatenate((input[0, :, -1], true[0, :, -1]), axis=0) |
|
pd = np.concatenate((input[0, :, -1], pred[0, :, -1]), axis=0) |
|
visual(gt, pd, os.path.join(folder_path, str(i) + '.pdf')) |
|
|
|
if self.args.test_flop: |
|
test_params_flop((batch_x.shape[1],batch_x.shape[2])) |
|
exit() |
|
|
|
preds = np.concatenate(preds, axis=0) |
|
trues = np.concatenate(trues, axis=0) |
|
|
|
|
|
folder_path = './results/' + setting + '/' |
|
if not os.path.exists(folder_path): |
|
os.makedirs(folder_path) |
|
|
|
mae, mse, rmse, mape, mspe, rse, corr = metric(preds, trues) |
|
print('mse:{}, mae:{}'.format(mse, mae)) |
|
f = open("result.txt", 'a') |
|
f.write(setting + " \n") |
|
f.write('mse:{}, mae:{}'.format(mse, mae)) |
|
f.write('\n') |
|
f.write('\n') |
|
f.close() |
|
return [mae, mse] |
|
|
|
def predict(self, setting, load=False): |
|
pred_data, pred_loader = self._get_data(flag='pred') |
|
|
|
if load: |
|
path = os.path.join(self.args.checkpoints, setting) |
|
best_model_path = path + '/' + 'checkpoint.pth' |
|
self.model.load_state_dict(torch.load(best_model_path)) |
|
|
|
preds = [] |
|
|
|
self.model.eval() |
|
with torch.no_grad(): |
|
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(pred_loader): |
|
batch_x = batch_x.float().to(self.device) |
|
batch_y = batch_y.float() |
|
batch_x_mark = batch_x_mark.float().to(self.device) |
|
batch_y_mark = batch_y_mark.float().to(self.device) |
|
|
|
|
|
dec_inp = torch.zeros([batch_y.shape[0], self.args.pred_len, batch_y.shape[2]]).float().to(batch_y.device) |
|
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device) |
|
|
|
if self.args.use_amp: |
|
with torch.cuda.amp.autocast(): |
|
outputs = self.model(batch_x) |
|
|
|
else: |
|
outputs = self.model(batch_x) |
|
pred = outputs.detach().cpu().numpy() |
|
preds.append(pred) |
|
|
|
preds = np.array(preds) |
|
preds = np.concatenate(preds, axis=0) |
|
if (pred_data.scale): |
|
preds = pred_data.inverse_transform(preds) |
|
|
|
|
|
folder_path = './results/' + setting + '/' |
|
if not os.path.exists(folder_path): |
|
os.makedirs(folder_path) |
|
|
|
np.save(folder_path + 'real_prediction.npy', preds) |
|
pd.DataFrame(np.append(np.transpose([pred_data.future_dates]), preds[0], axis=1), columns=pred_data.cols).to_csv(folder_path + 'real_prediction.csv', index=False) |
|
|
|
return |
|
|