import os.path as osp import numpy as np import torch from torch_geometric.data import Data, InMemoryDataset, download_url from tqdm import tqdm class MD22(InMemoryDataset): def __init__(self, root, dataset_arg=None, transform=None, pre_transform=None): self.dataset_arg = dataset_arg super(MD22, self).__init__(osp.join(root, dataset_arg), transform, pre_transform) self.data, self.slices = torch.load(self.processed_paths[0]) @property def molecule_names(self): molecule_names = dict( Ac_Ala3_NHMe="md22_Ac-Ala3-NHMe.npz", DHA="md22_DHA.npz", stachyose="md22_stachyose.npz", AT_AT="md22_AT-AT.npz", AT_AT_CG_CG="md22_AT-AT-CG-CG.npz", buckyball_catcher="md22_buckyball-catcher.npz", double_walled_nanotube="md22_dw_nanotube.npz" ) return molecule_names @property def raw_file_names(self): return [self.molecule_names[self.dataset_arg]] @property def processed_file_names(self): return [f"md22_{self.dataset_arg}.pt"] @property def base_url(self): return "http://www.quantum-machine.org/gdml/data/npz/" def download(self): download_url(self.base_url + self.molecule_names[self.dataset_arg], self.raw_dir) def process(self): for path, processed_path in zip(self.raw_paths, self.processed_paths): data_npz = np.load(path) z = torch.from_numpy(data_npz["z"]).long() positions = torch.from_numpy(data_npz["R"]).float() energies = torch.from_numpy(data_npz["E"]).float() forces = torch.from_numpy(data_npz["F"]).float() samples = [] for pos, y, dy in tqdm(zip(positions, energies, forces), total=energies.size(0)): data = Data(z=z, pos=pos, y=y.unsqueeze(1), dy=dy) if self.pre_filter is not None: data = self.pre_filter(data) if self.pre_transform is not None: data = self.pre_transform(data) samples.append(data) data, slices = self.collate(samples) torch.save((data, slices), processed_path) @property def molecule_splits(self): """ Splits refer to MD22 https://arxiv.org/pdf/2209.14865.pdf """ return dict( Ac_Ala3_NHMe=6000, DHA=8000, stachyose=8000, AT_AT=3000, AT_AT_CG_CG=2000, buckyball_catcher=600, double_walled_nanotube=800 )