""" This file contains primitives for multi-gpu communication. This is useful when doing distributed training. deeply borrow from maskrcnn-benchmark and ST3D """ import pickle import time import torch import torch.distributed as dist def get_world_size(): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return dist.barrier() def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor origin_size = None if not isinstance(data, torch.Tensor): buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") else: origin_size = data.size() tensor = data.reshape(-1) tensor_type = tensor.dtype # obtain Tensor size of each rank local_size = torch.LongTensor([tensor.numel()]).to("cuda") size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.FloatTensor(size=(max_size,)).cuda().to(tensor_type)) if local_size != max_size: padding = torch.FloatTensor(size=(max_size - local_size,)).cuda().to(tensor_type) tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): if origin_size is None: buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) else: buffer = tensor[:size] data_list.append(buffer) if origin_size is not None: new_shape = [-1] + list(origin_size[1:]) resized_list = [] for data in data_list: # suppose the difference of tensor size exist in first dimension data = data.reshape(new_shape) resized_list.append(data) return resized_list else: return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that process with rank 0 has the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.reduce(values, dst=0) if dist.get_rank() == 0 and average: # only main process gets accumulated, so only divide by # world_size in this case values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict def average_reduce_value(data): data_list = all_gather(data) return sum(data_list) / len(data_list) def all_reduce(data, op="sum", average=False): def op_map(op): op_dict = { "SUM": dist.ReduceOp.SUM, "MAX": dist.ReduceOp.MAX, "MIN": dist.ReduceOp.MIN, "PRODUCT": dist.ReduceOp.PRODUCT, } return op_dict[op] world_size = get_world_size() if world_size > 1: reduced_data = data.clone() dist.all_reduce(reduced_data, op=op_map(op.upper())) if average: assert op.upper() == 'SUM' return reduced_data / world_size else: return reduced_data return data @torch.no_grad() def concat_all_gather(tensor): """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ tensors_gather = [torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())] torch.distributed.all_gather(tensors_gather, tensor, async_op=False) output = torch.cat(tensors_gather, dim=0) return output