import os import numpy as np import pandas as pd import torch from typing import Dict, List, Tuple, Union, Optional import nltk from nltk.corpus import wordnet as wn from nltk.tokenize import word_tokenize import re import logging # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Ensure NLTK resources are available def ensure_nltk_resources(): """Ensure necessary NLTK resources are downloaded""" resources = ['punkt', 'wordnet'] for resource in resources: try: nltk.data.find(f'tokenizers/{resource}') logger.info(f"NLTK resource {resource} already exists") except LookupError: try: logger.info(f"Downloading NLTK resource {resource}") nltk.download(resource, quiet=False) logger.info(f"NLTK resource {resource} downloaded successfully") except Exception as e: logger.error(f"Failed to download NLTK resource {resource}: {str(e)}") # Try to download punkt_tab resource try: nltk.data.find('tokenizers/punkt_tab') except LookupError: try: logger.info("Downloading NLTK resource punkt_tab") nltk.download('punkt_tab', quiet=False) logger.info("NLTK resource punkt_tab downloaded successfully") except Exception as e: logger.warning(f"Failed to download NLTK resource punkt_tab: {str(e)}") logger.info("Will use alternative tokenization method") # Try to download resources when module is imported ensure_nltk_resources() # Ensure necessary NLTK resources are downloaded try: nltk.data.find('tokenizers/punkt') except LookupError: nltk.download('punkt') try: nltk.data.find('corpora/wordnet') except LookupError: nltk.download('wordnet') # Simple tokenization function, not dependent on NLTK def simple_tokenize(text): """Simple tokenization function using regular expressions""" if not isinstance(text, str): return [] # Convert text to lowercase text = text.lower() # Use regular expressions for tokenization, preserving letters, numbers, and some basic punctuation import re tokens = re.findall(r'\b\w+\b|[!?,.]', text) return tokens # Add more robust tokenization processing def safe_tokenize(text): """Safe tokenization function, uses simple tokenization method when NLTK tokenization fails""" if not isinstance(text, str): return [] # First try using NLTK's word_tokenize punkt_available = True try: nltk.data.find('tokenizers/punkt') except LookupError: punkt_available = False if punkt_available: try: return word_tokenize(text.lower()) except Exception as e: logger.warning(f"NLTK tokenization failed: {str(e)}") # If NLTK tokenization is not available or fails, use simple tokenization method return simple_tokenize(text) # Load psycholinguistic dictionary (simulated - should use real data in actual applications) class PsycholinguisticFeatures: def __init__(self, lexicon_path: Optional[str] = None): """ Initialize psycholinguistic feature extractor Args: lexicon_path: Path to psycholinguistic lexicon, uses simulated data if None """ # If no lexicon is provided, create a simple simulated dictionary if lexicon_path and os.path.exists(lexicon_path): self.lexicon = pd.read_csv(lexicon_path) self.word_to_scores = { row['word']: { 'valence': row['valence'], 'arousal': row['arousal'], 'dominance': row['dominance'] } for _, row in self.lexicon.iterrows() } else: # Create simulated dictionary self.word_to_scores = {} # Sentiment vocabulary positive_words = ['good', 'great', 'excellent', 'happy', 'joy', 'love', 'nice', 'wonderful', 'amazing', 'fantastic'] negative_words = ['bad', 'terrible', 'awful', 'sad', 'hate', 'poor', 'horrible', 'disappointing', 'worst', 'negative'] neutral_words = ['the', 'a', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'and', 'or', 'but', 'if', 'while', 'when'] # Assign high values to positive words for word in positive_words: self.word_to_scores[word] = { 'valence': np.random.uniform(0.7, 0.9), 'arousal': np.random.uniform(0.5, 0.8), 'dominance': np.random.uniform(0.6, 0.9) } # Assign low values to negative words for word in negative_words: self.word_to_scores[word] = { 'valence': np.random.uniform(0.1, 0.3), 'arousal': np.random.uniform(0.5, 0.8), 'dominance': np.random.uniform(0.1, 0.4) } # Assign medium values to neutral words for word in neutral_words: self.word_to_scores[word] = { 'valence': np.random.uniform(0.4, 0.6), 'arousal': np.random.uniform(0.3, 0.5), 'dominance': np.random.uniform(0.4, 0.6) } def get_token_scores(self, token: str) -> Dict[str, float]: """Get psycholinguistic scores for a single token""" token = token.lower() if token in self.word_to_scores: return self.word_to_scores[token] else: # Return medium values for unknown words return { 'valence': 0.5, 'arousal': 0.5, 'dominance': 0.5 } def get_importance_score(self, token: str) -> float: """Calculate importance score for a token""" scores = self.get_token_scores(token) # Importance score is a weighted combination of valence, arousal, and dominance # Here we give valence a higher weight because it is more relevant to sentiment analysis importance = 0.6 * abs(scores['valence'] - 0.5) + 0.2 * scores['arousal'] + 0.2 * scores['dominance'] return importance def compute_scores_for_text(self, text: str) -> List[Dict[str, float]]: """Calculate psycholinguistic scores for each token in the text""" tokens = safe_tokenize(text) return [self.get_token_scores(token) for token in tokens] def compute_importance_for_text(self, text: str) -> List[float]: """Calculate importance scores for each token in the text""" tokens = safe_tokenize(text) return [self.get_importance_score(token) for token in tokens] class LinguisticRules: def __init__(self): """Initialize linguistic rules processor""" # Regular expressions for sarcasm patterns self.sarcasm_patterns = [ r'(so|really|very|totally) (great|nice|good|wonderful|fantastic)', r'(yeah|sure|right),? (like|as if)', r'(oh|ah),? (great|wonderful|fantastic|perfect)' ] # List of negation words self.negation_words = [ 'not', 'no', 'never', 'none', 'nobody', 'nothing', 'neither', 'nor', 'nowhere', "don't", "doesn't", "didn't", "won't", "wouldn't", "couldn't", "shouldn't", "isn't", "aren't", "wasn't", "weren't" ] # Polysemous words and their possible substitutes self.polysemy_words = { 'fine': ['good', 'acceptable', 'penalty', 'delicate'], 'right': ['correct', 'appropriate', 'conservative', 'direction'], 'like': ['enjoy', 'similar', 'such as', 'want'], 'mean': ['signify', 'unkind', 'average', 'intend'], 'kind': ['type', 'benevolent', 'sort', 'sympathetic'], 'fair': ['just', 'pale', 'average', 'exhibition'], 'light': ['illumination', 'lightweight', 'pale', 'ignite'], 'hard': ['difficult', 'solid', 'harsh', 'diligent'], 'sound': ['noise', 'healthy', 'logical', 'measure'], 'bright': ['intelligent', 'luminous', 'vivid', 'promising'] } def detect_sarcasm(self, text: str) -> bool: """Detect if sarcasm patterns exist in the text""" text = text.lower() for pattern in self.sarcasm_patterns: if re.search(pattern, text): return True return False def detect_negation(self, text: str) -> List[int]: """Detect positions of negation words in the text""" tokens = safe_tokenize(text) negation_positions = [] for i, token in enumerate(tokens): if token in self.negation_words: negation_positions.append(i) return negation_positions def find_polysemy_words(self, text: str) -> Dict[int, List[str]]: """Find polysemous words in the text and their possible substitutes""" tokens = safe_tokenize(text) polysemy_positions = {} for i, token in enumerate(tokens): if token in self.polysemy_words: polysemy_positions[i] = self.polysemy_words[token] return polysemy_positions def get_wordnet_synonyms(self, word: str) -> List[str]: """Get synonyms from WordNet""" synonyms = [] for syn in wn.synsets(word): for lemma in syn.lemmas(): synonyms.append(lemma.name()) return list(set(synonyms)) def apply_rule_transformations(self, token_embeddings: torch.Tensor, text: str, tokenizer) -> torch.Tensor: """ Apply rule-based transformations to token embeddings Args: token_embeddings: Original token embeddings [batch_size, seq_len, hidden_dim] text: Original text tokenizer: Tokenizer Returns: Transformed token embeddings """ # Clone original embeddings transformed_embeddings = token_embeddings.clone() try: # Detect sarcasm if self.detect_sarcasm(text): # For sarcasm, we reverse sentiment-related embedding dimensions # This is a simplified implementation, more complex transformations may be needed in real applications sentiment_dims = torch.randperm(token_embeddings.shape[-1])[:token_embeddings.shape[-1]//10] transformed_embeddings[:, :, sentiment_dims] = -transformed_embeddings[:, :, sentiment_dims] # Handle negation negation_positions = self.detect_negation(text) if negation_positions: # For words following negation words, reverse their sentiment-related embedding dimensions try: tokens = tokenizer.tokenize(text) except Exception as e: logger.warning(f"Tokenization failed: {str(e)}, using alternative tokenization") tokens = safe_tokenize(text) for pos in negation_positions: if pos + 1 < len(tokens): # Ensure there's a word after the negation # Find the position of the token after negation in the embeddings # Simplified handling, actual applications should consider tokenization differences sentiment_dims = torch.randperm(token_embeddings.shape[-1])[:token_embeddings.shape[-1]//10] if pos + 1 < token_embeddings.shape[1]: # Ensure not exceeding embedding dimensions transformed_embeddings[:, pos+1, sentiment_dims] = -transformed_embeddings[:, pos+1, sentiment_dims] # Handle polysemy polysemy_positions = self.find_polysemy_words(text) if polysemy_positions: # For polysemous words, add some noise to simulate semantic ambiguity for pos in polysemy_positions: if pos < token_embeddings.shape[1]: # Ensure not exceeding embedding dimensions noise = torch.randn_like(transformed_embeddings[:, pos, :]) * 0.1 transformed_embeddings[:, pos, :] += noise except Exception as e: logger.error(f"Error applying rule transformations: {str(e)}") # Return original embeddings in case of error return transformed_embeddings class HybridNoiseAugmentation: def __init__( self, sigma: float = 0.1, alpha: float = 0.5, gamma: float = 0.1, psycholinguistic_features: Optional[PsycholinguisticFeatures] = None, linguistic_rules: Optional[LinguisticRules] = None ): """ Initialize hybrid noise augmentation Args: sigma: Scaling factor for Gaussian noise alpha: Mixing weight parameter gamma: Adjustment parameter in attention mechanism psycholinguistic_features: Psycholinguistic feature extractor linguistic_rules: Linguistic rules processor """ self.sigma = sigma self.alpha = alpha self.gamma = gamma self.psycholinguistic_features = psycholinguistic_features or PsycholinguisticFeatures() self.linguistic_rules = linguistic_rules or LinguisticRules() def apply_psycholinguistic_noise( self, token_embeddings: torch.Tensor, texts: List[str], tokenizer ) -> torch.Tensor: """ Apply psycholinguistic-based noise Args: token_embeddings: Original token embeddings [batch_size, seq_len, hidden_dim] texts: List of original texts tokenizer: Tokenizer Returns: Token embeddings with applied noise """ batch_size, seq_len, hidden_dim = token_embeddings.shape noised_embeddings = token_embeddings.clone() for i, text in enumerate(texts): try: # Calculate importance scores for each token importance_scores = self.psycholinguistic_features.compute_importance_for_text(text) # Tokenize the text to match the model's tokenization try: model_tokens = tokenizer.tokenize(text) except Exception as e: logger.warning(f"Model tokenization failed: {str(e)}, using alternative tokenization") model_tokens = safe_tokenize(text) # Assign importance scores to each token (simplified handling) token_scores = torch.ones(seq_len, device=token_embeddings.device) * 0.5 for j, token in enumerate(model_tokens[:seq_len-2]): # Exclude [CLS] and [SEP] if j < len(importance_scores): token_scores[j+1] = importance_scores[j] # +1 is for [CLS] # Scale noise according to importance scores noise = torch.randn_like(token_embeddings[i]) * self.sigma scaled_noise = noise * token_scores.unsqueeze(1) # Apply noise noised_embeddings[i] = token_embeddings[i] + scaled_noise except Exception as e: logger.error(f"Error processing text {i}: {str(e)}") # Use original embeddings in case of error continue return noised_embeddings def apply_rule_based_perturbation( self, token_embeddings: torch.Tensor, texts: List[str], tokenizer ) -> torch.Tensor: """ Apply rule-based perturbation Args: token_embeddings: Original token embeddings [batch_size, seq_len, hidden_dim] texts: List of original texts tokenizer: Tokenizer Returns: Token embeddings with applied perturbation """ batch_size = token_embeddings.shape[0] perturbed_embeddings = token_embeddings.clone() for i, text in enumerate(texts): try: # Apply rule transformations perturbed_embeddings[i:i+1] = self.linguistic_rules.apply_rule_transformations( token_embeddings[i:i+1], text, tokenizer ) except Exception as e: logger.error(f"Error applying rule transformations to text {i}: {str(e)}") # Keep original embeddings in case of error continue return perturbed_embeddings def generate_hybrid_embeddings( self, token_embeddings: torch.Tensor, texts: List[str], tokenizer ) -> torch.Tensor: """ Generate hybrid embeddings Args: token_embeddings: Original token embeddings [batch_size, seq_len, hidden_dim] texts: List of original texts tokenizer: Tokenizer Returns: Hybrid embeddings """ # Apply psycholinguistic noise psycholinguistic_embeddings = self.apply_psycholinguistic_noise(token_embeddings, texts, tokenizer) # Apply rule-based perturbation rule_based_embeddings = self.apply_rule_based_perturbation(token_embeddings, texts, tokenizer) # Mix the two types of embeddings hybrid_embeddings = ( self.alpha * psycholinguistic_embeddings + (1 - self.alpha) * rule_based_embeddings ) return hybrid_embeddings def generate_psycholinguistic_alignment_matrix( self, texts: List[str], seq_len: int, device: torch.device ) -> torch.Tensor: """ Generate psycholinguistic alignment matrix Args: texts: List of original texts seq_len: Sequence length device: Computation device Returns: Psycholinguistic alignment matrix [batch_size, seq_len, seq_len] """ batch_size = len(texts) H = torch.zeros((batch_size, seq_len, seq_len), device=device) for i, text in enumerate(texts): try: # Calculate importance scores for each token importance_scores = self.psycholinguistic_features.compute_importance_for_text(text) # Pad to sequence length padded_scores = importance_scores + [0.5] * (seq_len - len(importance_scores)) padded_scores = padded_scores[:seq_len] # Create alignment matrix scores_tensor = torch.tensor(padded_scores, device=device) # Use outer product to create matrix, emphasizing relationships between important tokens H[i] = torch.outer(scores_tensor, scores_tensor) except Exception as e: logger.error(f"Error generating alignment matrix for text {i}: {str(e)}") # Use default values in case of error H[i] = torch.eye(seq_len, device=device) * 0.5 return H