import numpy as np import scipy import torch import copy from scipy.spatial import Delaunay from ..ops.roiaware_pool3d import roiaware_pool3d_utils from . import common_utils def in_hull(p, hull): """ :param p: (N, K) test points :param hull: (M, K) M corners of a box :return (N) bool """ try: if not isinstance(hull, Delaunay): hull = Delaunay(hull) flag = hull.find_simplex(p) >= 0 except scipy.spatial.qhull.QhullError: print('Warning: not a hull %s' % str(hull)) flag = np.zeros(p.shape[0], dtype=np.bool) return flag def boxes_to_corners_3d(boxes3d): """ 7 -------- 4 /| /| 6 -------- 5 . | | | | . 3 -------- 0 |/ |/ 2 -------- 1 Args: boxes3d: (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center Returns: """ boxes3d, is_numpy = common_utils.check_numpy_to_torch(boxes3d) template = boxes3d.new_tensor(( [1, 1, -1], [1, -1, -1], [-1, -1, -1], [-1, 1, -1], [1, 1, 1], [1, -1, 1], [-1, -1, 1], [-1, 1, 1], )) / 2 corners3d = boxes3d[:, None, 3:6].repeat(1, 8, 1) * template[None, :, :] corners3d = common_utils.rotate_points_along_z(corners3d.view(-1, 8, 3), boxes3d[:, 6]).view(-1, 8, 3) corners3d += boxes3d[:, None, 0:3] return corners3d.numpy() if is_numpy else corners3d def corners_rect_to_camera(corners): """ 7 -------- 4 /| /| 6 -------- 5 . | | | | . 3 -------- 0 |/ |/ 2 -------- 1 Args: corners: (8, 3) [x0, y0, z0, ...], (x, y, z) is the point coordinate in image rect Returns: boxes_rect: (7,) [x, y, z, l, h, w, r] in rect camera coords """ height_group = [(0, 4), (1, 5), (2, 6), (3, 7)] width_group = [(0, 1), (2, 3), (4, 5), (6, 7)] length_group = [(0, 3), (1, 2), (4, 7), (5, 6)] vector_group = [(0, 3), (1, 2), (4, 7), (5, 6)] height, width, length = 0., 0., 0. vector = np.zeros(2, dtype=np.float32) for index_h, index_w, index_l, index_v in zip(height_group, width_group, length_group, vector_group): height += np.linalg.norm(corners[index_h[0], :] - corners[index_h[1], :]) width += np.linalg.norm(corners[index_w[0], :] - corners[index_w[1], :]) length += np.linalg.norm(corners[index_l[0], :] - corners[index_l[1], :]) vector[0] += (corners[index_v[0], :] - corners[index_v[1], :])[0] vector[1] += (corners[index_v[0], :] - corners[index_v[1], :])[2] height, width, length = height*1.0/4, width*1.0/4, length*1.0/4 rotation_y = -np.arctan2(vector[1], vector[0]) center_point = corners.mean(axis=0) center_point[1] += height/2 camera_rect = np.concatenate([center_point, np.array([length, height, width, rotation_y])]) return camera_rect def mask_boxes_outside_range_numpy(boxes, limit_range, min_num_corners=1, use_center_to_filter=True): """ Args: boxes: (N, 7) [x, y, z, dx, dy, dz, heading, ...], (x, y, z) is the box center limit_range: [minx, miny, minz, maxx, maxy, maxz] min_num_corners: Returns: """ if boxes.shape[1] > 7: boxes = boxes[:, 0:7] if use_center_to_filter: box_centers = boxes[:, 0:3] mask = ((box_centers >= limit_range[0:3]) & (box_centers <= limit_range[3:6])).all(axis=-1) else: corners = boxes_to_corners_3d(boxes) # (N, 8, 3) corners = corners[:, :, 0:2] mask = ((corners >= limit_range[0:2]) & (corners <= limit_range[3:5])).all(axis=2) mask = mask.sum(axis=1) >= min_num_corners # (N) return mask def remove_points_in_boxes3d(points, boxes3d): """ Args: points: (num_points, 3 + C) boxes3d: (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center, each box DO NOT overlaps Returns: """ boxes3d, is_numpy = common_utils.check_numpy_to_torch(boxes3d) points, is_numpy = common_utils.check_numpy_to_torch(points) point_masks = roiaware_pool3d_utils.points_in_boxes_cpu(points[:, 0:3], boxes3d) points = points[point_masks.sum(dim=0) == 0] return points.numpy() if is_numpy else points def boxes3d_kitti_camera_to_lidar(boxes3d_camera, calib): """ Args: boxes3d_camera: (N, 7) [x, y, z, l, h, w, r] in rect camera coords calib: Returns: boxes3d_lidar: [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center """ boxes3d_camera_copy = copy.deepcopy(boxes3d_camera) xyz_camera, r = boxes3d_camera_copy[:, 0:3], boxes3d_camera_copy[:, 6:7] l, h, w = boxes3d_camera_copy[:, 3:4], boxes3d_camera_copy[:, 4:5], boxes3d_camera_copy[:, 5:6] xyz_lidar = calib.rect_to_lidar(xyz_camera) xyz_lidar[:, 2] += h[:, 0] / 2 return np.concatenate([xyz_lidar, l, w, h, -(r + np.pi / 2)], axis=-1) def boxes3d_kitti_fakelidar_to_lidar(boxes3d_lidar): """ Args: boxes3d_fakelidar: (N, 7) [x, y, z, w, l, h, r] in old LiDAR coordinates, z is bottom center Returns: boxes3d_lidar: [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center """ boxes3d_lidar_copy = copy.deepcopy(boxes3d_lidar) w, l, h = boxes3d_lidar_copy[:, 3:4], boxes3d_lidar_copy[:, 4:5], boxes3d_lidar_copy[:, 5:6] r = boxes3d_lidar_copy[:, 6:7] boxes3d_lidar_copy[:, 2] += h[:, 0] / 2 return np.concatenate([boxes3d_lidar_copy[:, 0:3], l, w, h, -(r + np.pi / 2)], axis=-1) def boxes3d_kitti_lidar_to_fakelidar(boxes3d_lidar): """ Args: boxes3d_lidar: (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center Returns: boxes3d_fakelidar: [x, y, z, w, l, h, r] in old LiDAR coordinates, z is bottom center """ boxes3d_lidar_copy = copy.deepcopy(boxes3d_lidar) dx, dy, dz = boxes3d_lidar_copy[:, 3:4], boxes3d_lidar_copy[:, 4:5], boxes3d_lidar_copy[:, 5:6] heading = boxes3d_lidar_copy[:, 6:7] boxes3d_lidar_copy[:, 2] -= dz[:, 0] / 2 return np.concatenate([boxes3d_lidar_copy[:, 0:3], dy, dx, dz, -heading - np.pi / 2], axis=-1) def enlarge_box3d(boxes3d, extra_width=(0, 0, 0)): """ Args: boxes3d: [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center extra_width: [extra_x, extra_y, extra_z] Returns: """ boxes3d, is_numpy = common_utils.check_numpy_to_torch(boxes3d) large_boxes3d = boxes3d.clone() large_boxes3d[:, 3:6] += boxes3d.new_tensor(extra_width)[None, :] return large_boxes3d def boxes3d_lidar_to_kitti_camera(boxes3d_lidar, calib): """ :param boxes3d_lidar: (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center :param calib: :return: boxes3d_camera: (N, 7) [x, y, z, l, h, w, r] in rect camera coords """ boxes3d_lidar_copy = copy.deepcopy(boxes3d_lidar) xyz_lidar = boxes3d_lidar_copy[:, 0:3] l, w, h = boxes3d_lidar_copy[:, 3:4], boxes3d_lidar_copy[:, 4:5], boxes3d_lidar_copy[:, 5:6] r = boxes3d_lidar_copy[:, 6:7] xyz_lidar[:, 2] -= h.reshape(-1) / 2 xyz_cam = calib.lidar_to_rect(xyz_lidar) # xyz_cam[:, 1] += h.reshape(-1) / 2 r = -r - np.pi / 2 return np.concatenate([xyz_cam, l, h, w, r], axis=-1) def boxes3d_to_corners3d_kitti_camera(boxes3d, bottom_center=True): """ :param boxes3d: (N, 7) [x, y, z, l, h, w, ry] in camera coords, see the definition of ry in KITTI dataset :param bottom_center: whether y is on the bottom center of object :return: corners3d: (N, 8, 3) 7 -------- 4 /| /| 6 -------- 5 . | | | | . 3 -------- 0 |/ |/ 2 -------- 1 """ boxes_num = boxes3d.shape[0] l, h, w = boxes3d[:, 3], boxes3d[:, 4], boxes3d[:, 5] x_corners = np.array([l / 2., l / 2., -l / 2., -l / 2., l / 2., l / 2., -l / 2., -l / 2], dtype=np.float32).T z_corners = np.array([w / 2., -w / 2., -w / 2., w / 2., w / 2., -w / 2., -w / 2., w / 2.], dtype=np.float32).T if bottom_center: y_corners = np.zeros((boxes_num, 8), dtype=np.float32) y_corners[:, 4:8] = -h.reshape(boxes_num, 1).repeat(4, axis=1) # (N, 8) else: y_corners = np.array([h / 2., h / 2., h / 2., h / 2., -h / 2., -h / 2., -h / 2., -h / 2.], dtype=np.float32).T ry = boxes3d[:, 6] zeros, ones = np.zeros(ry.size, dtype=np.float32), np.ones(ry.size, dtype=np.float32) rot_list = np.array([[np.cos(ry), zeros, -np.sin(ry)], [zeros, ones, zeros], [np.sin(ry), zeros, np.cos(ry)]]) # (3, 3, N) R_list = np.transpose(rot_list, (2, 0, 1)) # (N, 3, 3) temp_corners = np.concatenate((x_corners.reshape(-1, 8, 1), y_corners.reshape(-1, 8, 1), z_corners.reshape(-1, 8, 1)), axis=2) # (N, 8, 3) rotated_corners = np.matmul(temp_corners, R_list) # (N, 8, 3) x_corners, y_corners, z_corners = rotated_corners[:, :, 0], rotated_corners[:, :, 1], rotated_corners[:, :, 2] x_loc, y_loc, z_loc = boxes3d[:, 0], boxes3d[:, 1], boxes3d[:, 2] x = x_loc.reshape(-1, 1) + x_corners.reshape(-1, 8) y = y_loc.reshape(-1, 1) + y_corners.reshape(-1, 8) z = z_loc.reshape(-1, 1) + z_corners.reshape(-1, 8) corners = np.concatenate((x.reshape(-1, 8, 1), y.reshape(-1, 8, 1), z.reshape(-1, 8, 1)), axis=2) return corners.astype(np.float32) def boxes3d_kitti_camera_to_imageboxes(boxes3d, calib, image_shape=None): """ :param boxes3d: (N, 7) [x, y, z, l, h, w, r] in rect camera coords :param calib: :return: box_2d_preds: (N, 4) [x1, y1, x2, y2] """ corners3d = boxes3d_to_corners3d_kitti_camera(boxes3d) pts_img, _ = calib.rect_to_img(corners3d.reshape(-1, 3)) corners_in_image = pts_img.reshape(-1, 8, 2) min_uv = np.min(corners_in_image, axis=1) # (N, 2) max_uv = np.max(corners_in_image, axis=1) # (N, 2) boxes2d_image = np.concatenate([min_uv, max_uv], axis=1) if image_shape is not None: boxes2d_image[:, 0] = np.clip(boxes2d_image[:, 0], a_min=0, a_max=image_shape[1] - 1) boxes2d_image[:, 1] = np.clip(boxes2d_image[:, 1], a_min=0, a_max=image_shape[0] - 1) boxes2d_image[:, 2] = np.clip(boxes2d_image[:, 2], a_min=0, a_max=image_shape[1] - 1) boxes2d_image[:, 3] = np.clip(boxes2d_image[:, 3], a_min=0, a_max=image_shape[0] - 1) return boxes2d_image def boxes_iou_normal(boxes_a, boxes_b): """ Args: boxes_a: (N, 4) [x1, y1, x2, y2] boxes_b: (M, 4) [x1, y1, x2, y2] Returns: """ assert boxes_a.shape[1] == boxes_b.shape[1] == 4 x_min = torch.max(boxes_a[:, 0, None], boxes_b[None, :, 0]) x_max = torch.min(boxes_a[:, 2, None], boxes_b[None, :, 2]) y_min = torch.max(boxes_a[:, 1, None], boxes_b[None, :, 1]) y_max = torch.min(boxes_a[:, 3, None], boxes_b[None, :, 3]) x_len = torch.clamp_min(x_max - x_min, min=0) y_len = torch.clamp_min(y_max - y_min, min=0) area_a = (boxes_a[:, 2] - boxes_a[:, 0]) * (boxes_a[:, 3] - boxes_a[:, 1]) area_b = (boxes_b[:, 2] - boxes_b[:, 0]) * (boxes_b[:, 3] - boxes_b[:, 1]) a_intersect_b = x_len * y_len iou = a_intersect_b / torch.clamp_min(area_a[:, None] + area_b[None, :] - a_intersect_b, min=1e-6) return iou def boxes3d_lidar_to_aligned_bev_boxes(boxes3d): """ Args: boxes3d: (N, 7 + C) [x, y, z, dx, dy, dz, heading] in lidar coordinate Returns: aligned_bev_boxes: (N, 4) [x1, y1, x2, y2] in the above lidar coordinate """ rot_angle = common_utils.limit_period(boxes3d[:, 6], offset=0.5, period=np.pi).abs() choose_dims = torch.where(rot_angle[:, None] < np.pi / 4, boxes3d[:, [3, 4]], boxes3d[:, [4, 3]]) aligned_bev_boxes = torch.cat((boxes3d[:, 0:2] - choose_dims / 2, boxes3d[:, 0:2] + choose_dims / 2), dim=1) return aligned_bev_boxes def boxes3d_nearest_bev_iou(boxes_a, boxes_b): """ Args: boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading] Returns: """ boxes_bev_a = boxes3d_lidar_to_aligned_bev_boxes(boxes_a) boxes_bev_b = boxes3d_lidar_to_aligned_bev_boxes(boxes_b) return boxes_iou_normal(boxes_bev_a, boxes_bev_b) def area(box) -> torch.Tensor: """ Computes the area of all the boxes. Returns: torch.Tensor: a vector with areas of each box. """ area = (box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1]) return area # implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py # with slight modifications def pairwise_iou(boxes1, boxes2) -> torch.Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ area1 = area(boxes1) area2 = area(boxes2) width_height = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) - torch.max( boxes1[:, None, :2], boxes2[:, :2] ) # [N,M,2] width_height.clamp_(min=0) # [N,M,2] inter = width_height.prod(dim=2) # [N,M] del width_height # handle empty boxes iou = torch.where( inter > 0, inter / (area1[:, None] + area2 - inter), torch.zeros(1, dtype=inter.dtype, device=inter.device), ) return iou def center_to_corner2d(center, dim): corners_norm = torch.tensor([[-0.5, -0.5], [-0.5, 0.5], [0.5, 0.5], [0.5, -0.5]], device=dim.device).type_as(center) # (4, 2) corners = dim.view([-1, 1, 2]) * corners_norm.view([1, 4, 2]) # (N, 4, 2) corners = corners + center.view(-1, 1, 2) return corners def bbox3d_overlaps_diou(pred_boxes, gt_boxes): """ https://github.com/agent-sgs/PillarNet/blob/master/det3d/core/utils/center_utils.py Args: pred_boxes (N, 7): gt_boxes (N, 7): Returns: _type_: _description_ """ assert pred_boxes.shape[0] == gt_boxes.shape[0] qcorners = center_to_corner2d(pred_boxes[:, :2], pred_boxes[:, 3:5]) # (N, 4, 2) gcorners = center_to_corner2d(gt_boxes[:, :2], gt_boxes[:, 3:5]) # (N, 4, 2) inter_max_xy = torch.minimum(qcorners[:, 2], gcorners[:, 2]) inter_min_xy = torch.maximum(qcorners[:, 0], gcorners[:, 0]) out_max_xy = torch.maximum(qcorners[:, 2], gcorners[:, 2]) out_min_xy = torch.minimum(qcorners[:, 0], gcorners[:, 0]) # calculate area volume_pred_boxes = pred_boxes[:, 3] * pred_boxes[:, 4] * pred_boxes[:, 5] volume_gt_boxes = gt_boxes[:, 3] * gt_boxes[:, 4] * gt_boxes[:, 5] inter_h = torch.minimum(pred_boxes[:, 2] + 0.5 * pred_boxes[:, 5], gt_boxes[:, 2] + 0.5 * gt_boxes[:, 5]) - \ torch.maximum(pred_boxes[:, 2] - 0.5 * pred_boxes[:, 5], gt_boxes[:, 2] - 0.5 * gt_boxes[:, 5]) inter_h = torch.clamp(inter_h, min=0) inter = torch.clamp((inter_max_xy - inter_min_xy), min=0) volume_inter = inter[:, 0] * inter[:, 1] * inter_h volume_union = volume_gt_boxes + volume_pred_boxes - volume_inter # boxes_iou3d_gpu(pred_boxes, gt_boxes) inter_diag = torch.pow(gt_boxes[:, 0:3] - pred_boxes[:, 0:3], 2).sum(-1) outer_h = torch.maximum(gt_boxes[:, 2] + 0.5 * gt_boxes[:, 5], pred_boxes[:, 2] + 0.5 * pred_boxes[:, 5]) - \ torch.minimum(gt_boxes[:, 2] - 0.5 * gt_boxes[:, 5], pred_boxes[:, 2] - 0.5 * pred_boxes[:, 5]) outer_h = torch.clamp(outer_h, min=0) outer = torch.clamp((out_max_xy - out_min_xy), min=0) outer_diag = outer[:, 0] ** 2 + outer[:, 1] ** 2 + outer_h ** 2 dious = volume_inter / volume_union - inter_diag / outer_diag dious = torch.clamp(dious, min=-1.0, max=1.0) return dious