import _init_path import argparse import datetime import glob import os import json from pathlib import Path import torch import torch.nn as nn from tensorboardX import SummaryWriter from pcdet.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file from pcdet.datasets import build_dataloader from pcdet.models import build_network, model_fn_decorator from pcdet.utils import common_utils from train_utils.optimization import build_optimizer, build_scheduler from train_utils.train_utils import train_model from eval_utils import eval_utils def parse_config(): parser = argparse.ArgumentParser(description='arg parser') parser.add_argument('--cfg_file', type=str, default=None, help='specify the config for training') parser.add_argument('--batch_size', type=int, default=None, required=False, help='batch size for training') parser.add_argument('--epochs', type=int, default=None, required=False, help='number of epochs to train for') parser.add_argument('--workers', type=int, default=4, help='number of workers for dataloader') parser.add_argument('--extra_tag', type=str, default='default', help='extra tag for this experiment') parser.add_argument('--ckpt', type=str, default=None, help='checkpoint to start from') parser.add_argument('--pretrained_model', type=str, default=None, help='pretrained_model') parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none') parser.add_argument('--tcp_port', type=int, default=18888, help='tcp port for distrbuted training') parser.add_argument('--sync_bn', action='store_true', default=False, help='whether to use sync bn') parser.add_argument('--fix_random_seed', action='store_true', default=False, help='') parser.add_argument('--ckpt_save_interval', type=int, default=1, help='number of training epochs') parser.add_argument('--local-rank', '--local_rank', type=int, default=None, help='local rank for distributed training') parser.add_argument('--max_ckpt_save_num', type=int, default=30, help='max number of saved checkpoint') parser.add_argument('--merge_all_iters_to_one_epoch', action='store_true', default=False, help='') parser.add_argument('--set', dest='set_cfgs', default=None, nargs=argparse.REMAINDER, help='set extra config keys if needed') parser.add_argument('--max_waiting_mins', type=int, default=0, help='max waiting minutes') parser.add_argument('--start_epoch', type=int, default=0, help='') parser.add_argument('--num_epochs_to_eval', type=int, default=0, help='number of checkpoints to be evaluated') parser.add_argument('--save_to_file', action='store_true', default=False, help='') parser.add_argument('--use_tqdm_to_record', action='store_true', default=False, help='if True, the intermediate losses will not be logged to file, only tqdm will be used') parser.add_argument('--logger_iter_interval', type=int, default=50, help='') parser.add_argument('--ckpt_save_time_interval', type=int, default=300, help='in terms of seconds') parser.add_argument('--wo_gpu_stat', action='store_true', help='') parser.add_argument('--use_amp', action='store_true', help='use mix precision training') parser.add_argument('--out_dir', type=str, default='run_0', help='path to save final info') args = parser.parse_args() cfg_from_yaml_file(args.cfg_file, cfg) cfg.TAG = Path(args.cfg_file).stem cfg.EXP_GROUP_PATH = '/'.join(args.cfg_file.split('/')[1:-1]) # remove 'cfgs' and 'xxxx.yaml' args.use_amp = args.use_amp or cfg.OPTIMIZATION.get('USE_AMP', False) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs, cfg) return args, cfg def eval_model(model, test_loader, args, eval_output_dir, logger, epoch_id, dist_test=False): model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=dist_test) model.cuda() eval_dict = eval_utils.eval_one_epoch( cfg, args, model, test_loader, epoch_id, logger, dist_test=dist_test, result_dir=eval_output_dir ) print(eval_dict) return eval_dict def main(): args, cfg = parse_config() if args.launcher == 'none': dist_train = False total_gpus = 1 else: if args.local_rank is None: args.local_rank = int(os.environ.get('LOCAL_RANK', '0')) total_gpus, cfg.LOCAL_RANK = getattr(common_utils, 'init_dist_%s' % args.launcher)( args.tcp_port, args.local_rank, backend='nccl' ) dist_train = True if args.batch_size is None: args.batch_size = cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU else: assert args.batch_size % total_gpus == 0, 'Batch size should match the number of gpus' args.batch_size = args.batch_size // total_gpus args.epochs = cfg.OPTIMIZATION.NUM_EPOCHS if args.epochs is None else args.epochs if args.fix_random_seed: common_utils.set_random_seed(666 + cfg.LOCAL_RANK) output_dir = cfg.ROOT_DIR / 'output' / cfg.EXP_GROUP_PATH / cfg.TAG / args.extra_tag ckpt_dir = output_dir / 'ckpt' output_dir.mkdir(parents=True, exist_ok=True) ckpt_dir.mkdir(parents=True, exist_ok=True) log_file = output_dir / ('train_%s.log' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S')) logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK) # log to file logger.info('**********************Start logging**********************') gpu_list = os.environ['CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys() else 'ALL' logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list) if dist_train: logger.info('Training in distributed mode : total_batch_size: %d' % (total_gpus * args.batch_size)) else: logger.info('Training with a single process') for key, val in vars(args).items(): logger.info('{:16} {}'.format(key, val)) log_config_to_file(cfg, logger=logger) if cfg.LOCAL_RANK == 0: os.system('cp %s %s' % (args.cfg_file, output_dir)) tb_log = SummaryWriter(log_dir=str(output_dir / 'tensorboard')) if cfg.LOCAL_RANK == 0 else None logger.info("----------- Create dataloader & network & optimizer -----------") train_set, train_loader, train_sampler = build_dataloader( dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, batch_size=args.batch_size, dist=dist_train, workers=args.workers, logger=logger, training=True, merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch, total_epochs=args.epochs, seed=666 if args.fix_random_seed else None ) model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=train_set) if args.sync_bn: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) model.cuda() optimizer = build_optimizer(model, cfg.OPTIMIZATION) # load checkpoint if it is possible start_epoch = it = 0 last_epoch = -1 if args.pretrained_model is not None: model.load_params_from_file(filename=args.pretrained_model, to_cpu=dist_train, logger=logger) if args.ckpt is not None: it, start_epoch = model.load_params_with_optimizer(args.ckpt, to_cpu=dist_train, optimizer=optimizer, logger=logger) last_epoch = start_epoch + 1 else: ckpt_list = glob.glob(str(ckpt_dir / '*.pth')) if len(ckpt_list) > 0: ckpt_list.sort(key=os.path.getmtime) while len(ckpt_list) > 0: try: it, start_epoch = model.load_params_with_optimizer( ckpt_list[-1], to_cpu=dist_train, optimizer=optimizer, logger=logger ) last_epoch = start_epoch + 1 break except: ckpt_list = ckpt_list[:-1] model.train() # before wrap to DistributedDataParallel to support fixed some parameters if dist_train: model = nn.parallel.DistributedDataParallel(model, device_ids=[cfg.LOCAL_RANK % torch.cuda.device_count()]) logger.info(f'----------- Model {cfg.MODEL.NAME} created, param count: {sum([m.numel() for m in model.parameters()])} -----------') logger.info(model) lr_scheduler, lr_warmup_scheduler = build_scheduler( optimizer, total_iters_each_epoch=len(train_loader), total_epochs=args.epochs, last_epoch=last_epoch, optim_cfg=cfg.OPTIMIZATION ) # -----------------------start training--------------------------- logger.info('**********************Start training %s/%s(%s)**********************' % (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag)) train_model( model, optimizer, train_loader, model_func=model_fn_decorator(), lr_scheduler=lr_scheduler, optim_cfg=cfg.OPTIMIZATION, start_epoch=start_epoch, total_epochs=args.epochs, start_iter=it, rank=cfg.LOCAL_RANK, tb_log=tb_log, ckpt_save_dir=ckpt_dir, train_sampler=train_sampler, lr_warmup_scheduler=lr_warmup_scheduler, ckpt_save_interval=args.ckpt_save_interval, max_ckpt_save_num=args.max_ckpt_save_num, merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch, logger=logger, logger_iter_interval=args.logger_iter_interval, ckpt_save_time_interval=args.ckpt_save_time_interval, use_logger_to_record=not args.use_tqdm_to_record, show_gpu_stat=not args.wo_gpu_stat, use_amp=args.use_amp, cfg=cfg ) if hasattr(train_set, 'use_shared_memory') and train_set.use_shared_memory: train_set.clean_shared_memory() logger.info('**********************End training %s/%s(%s)**********************\n\n\n' % (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag)) if cfg.LOCAL_RANK == 0: logger.info('**********************Start evaluation %s/%s(%s)**********************' % (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag)) test_set, test_loader, sampler = build_dataloader( dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, batch_size=args.batch_size, dist=False, workers=args.workers, logger=logger, training=False ) eval_output_dir = output_dir / 'eval' / 'eval_with_train' eval_output_dir.mkdir(parents=True, exist_ok=True) args.eval_epoch = max(args.epochs - args.num_epochs_to_eval, 0) # Only evaluate the last args.num_epochs_to_eval epochs # print(args.out_dir) if not os.path.exists(args.out_dir): os.makedirs(args.out_dir) eval_ckpt = os.path.join(ckpt_dir, f"checkpoint_epoch_{args.eval_epoch}.pth") print(eval_ckpt) args.ckpt = eval_ckpt result_dict = eval_model( model.module if dist_train else model, test_loader, args, eval_output_dir, logger, args.eval_epoch, dist_test=False ) print(result_dict.keys()) final_infos = { "Once": { "means": { "mAP": result_dict['AP_mean/overall'], "mAP_vehicle": result_dict['AP_Vehicle/overall'], "mAP_pedestrian": result_dict['AP_Pedestrian/overall'], "mAP_cyclist": result_dict['AP_Cyclist/overall'] } } } if not os.path.exists(args.out_dir): os.makedirs(args.out_dir) with open(os.path.join(args.out_dir, 'final_info.json'), 'w') as f: json.dump(final_infos, f, indent=4) logger.info('**********************End evaluation %s/%s(%s)**********************' % (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag)) if __name__ == '__main__': main()