from .utils import IntermediateLayerGetter from ._deeplab import DeepLabHead, DeepLabHeadV3Plus, DeepLabV3 from .backbone import ( resnet, mobilenetv2, hrnetv2, xception ) def _segm_hrnet(name, backbone_name, num_classes, pretrained_backbone): backbone = hrnetv2.__dict__[backbone_name](pretrained_backbone) # HRNetV2 config: # the final output channels is dependent on highest resolution channel config (c). # output of backbone will be the inplanes to assp: hrnet_channels = int(backbone_name.split('_')[-1]) inplanes = sum([hrnet_channels * 2 ** i for i in range(4)]) low_level_planes = 256 # all hrnet version channel output from bottleneck is the same aspp_dilate = [12, 24, 36] # If follow paper trend, can put [24, 48, 72]. if name=='deeplabv3plus': return_layers = {'stage4': 'out', 'layer1': 'low_level'} classifier = DeepLabHeadV3Plus(inplanes, low_level_planes, num_classes, aspp_dilate) elif name=='deeplabv3': return_layers = {'stage4': 'out'} classifier = DeepLabHead(inplanes, num_classes, aspp_dilate) backbone = IntermediateLayerGetter(backbone, return_layers=return_layers, hrnet_flag=True) model = DeepLabV3(backbone, classifier) return model def _segm_resnet(name, backbone_name, num_classes, output_stride, pretrained_backbone): if output_stride==8: replace_stride_with_dilation=[False, True, True] aspp_dilate = [12, 24, 36] else: replace_stride_with_dilation=[False, False, True] aspp_dilate = [6, 12, 18] backbone = resnet.__dict__[backbone_name]( pretrained=pretrained_backbone, replace_stride_with_dilation=replace_stride_with_dilation) inplanes = 2048 low_level_planes = 256 if name=='deeplabv3plus': return_layers = {'layer4': 'out', 'layer1': 'low_level'} classifier = DeepLabHeadV3Plus(inplanes, low_level_planes, num_classes, aspp_dilate) elif name=='deeplabv3': return_layers = {'layer4': 'out'} classifier = DeepLabHead(inplanes , num_classes, aspp_dilate) backbone = IntermediateLayerGetter(backbone, return_layers=return_layers) model = DeepLabV3(backbone, classifier) return model def _segm_xception(name, backbone_name, num_classes, output_stride, pretrained_backbone): if output_stride==8: replace_stride_with_dilation=[False, False, True, True] aspp_dilate = [12, 24, 36] else: replace_stride_with_dilation=[False, False, False, True] aspp_dilate = [6, 12, 18] backbone = xception.xception(pretrained= 'imagenet' if pretrained_backbone else False, replace_stride_with_dilation=replace_stride_with_dilation) inplanes = 2048 low_level_planes = 128 if name=='deeplabv3plus': return_layers = {'conv4': 'out', 'block1': 'low_level'} classifier = DeepLabHeadV3Plus(inplanes, low_level_planes, num_classes, aspp_dilate) elif name=='deeplabv3': return_layers = {'conv4': 'out'} classifier = DeepLabHead(inplanes , num_classes, aspp_dilate) backbone = IntermediateLayerGetter(backbone, return_layers=return_layers) model = DeepLabV3(backbone, classifier) return model def _segm_mobilenet(name, backbone_name, num_classes, output_stride, pretrained_backbone): if output_stride==8: aspp_dilate = [12, 24, 36] else: aspp_dilate = [6, 12, 18] backbone = mobilenetv2.mobilenet_v2(pretrained=pretrained_backbone, output_stride=output_stride) # rename layers backbone.low_level_features = backbone.features[0:4] backbone.high_level_features = backbone.features[4:-1] backbone.features = None backbone.classifier = None inplanes = 320 low_level_planes = 24 if name=='deeplabv3plus': return_layers = {'high_level_features': 'out', 'low_level_features': 'low_level'} classifier = DeepLabHeadV3Plus(inplanes, low_level_planes, num_classes, aspp_dilate) elif name=='deeplabv3': return_layers = {'high_level_features': 'out'} classifier = DeepLabHead(inplanes , num_classes, aspp_dilate) backbone = IntermediateLayerGetter(backbone, return_layers=return_layers) model = DeepLabV3(backbone, classifier) return model def _load_model(arch_type, backbone, num_classes, output_stride, pretrained_backbone): if backbone=='mobilenetv2': model = _segm_mobilenet(arch_type, backbone, num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone) elif backbone.startswith('resnet'): model = _segm_resnet(arch_type, backbone, num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone) elif backbone.startswith('hrnetv2'): model = _segm_hrnet(arch_type, backbone, num_classes, pretrained_backbone=pretrained_backbone) elif backbone=='xception': model = _segm_xception(arch_type, backbone, num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone) else: raise NotImplementedError return model # Deeplab v3 def deeplabv3_hrnetv2_48(num_classes=21, output_stride=4, pretrained_backbone=False): # no pretrained backbone yet return _load_model('deeplabv3', 'hrnetv2_48', output_stride, num_classes, pretrained_backbone=pretrained_backbone) def deeplabv3_hrnetv2_32(num_classes=21, output_stride=4, pretrained_backbone=True): return _load_model('deeplabv3', 'hrnetv2_32', output_stride, num_classes, pretrained_backbone=pretrained_backbone) def deeplabv3_resnet50(num_classes=21, output_stride=8, pretrained_backbone=True): """Constructs a DeepLabV3 model with a ResNet-50 backbone. Args: num_classes (int): number of classes. output_stride (int): output stride for deeplab. pretrained_backbone (bool): If True, use the pretrained backbone. """ return _load_model('deeplabv3', 'resnet50', num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone) def deeplabv3_resnet101(num_classes=21, output_stride=8, pretrained_backbone=True): """Constructs a DeepLabV3 model with a ResNet-101 backbone. Args: num_classes (int): number of classes. output_stride (int): output stride for deeplab. pretrained_backbone (bool): If True, use the pretrained backbone. """ return _load_model('deeplabv3', 'resnet101', num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone) def deeplabv3_mobilenet(num_classes=21, output_stride=8, pretrained_backbone=True, **kwargs): """Constructs a DeepLabV3 model with a MobileNetv2 backbone. Args: num_classes (int): number of classes. output_stride (int): output stride for deeplab. pretrained_backbone (bool): If True, use the pretrained backbone. """ return _load_model('deeplabv3', 'mobilenetv2', num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone) def deeplabv3_xception(num_classes=21, output_stride=8, pretrained_backbone=True, **kwargs): """Constructs a DeepLabV3 model with a Xception backbone. Args: num_classes (int): number of classes. output_stride (int): output stride for deeplab. pretrained_backbone (bool): If True, use the pretrained backbone. """ return _load_model('deeplabv3', 'xception', num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone) # Deeplab v3+ def deeplabv3plus_hrnetv2_48(num_classes=21, output_stride=4, pretrained_backbone=False): # no pretrained backbone yet return _load_model('deeplabv3plus', 'hrnetv2_48', num_classes, output_stride, pretrained_backbone=pretrained_backbone) def deeplabv3plus_hrnetv2_32(num_classes=21, output_stride=4, pretrained_backbone=True): return _load_model('deeplabv3plus', 'hrnetv2_32', num_classes, output_stride, pretrained_backbone=pretrained_backbone) def deeplabv3plus_resnet50(num_classes=21, output_stride=8, pretrained_backbone=True): """Constructs a DeepLabV3 model with a ResNet-50 backbone. Args: num_classes (int): number of classes. output_stride (int): output stride for deeplab. pretrained_backbone (bool): If True, use the pretrained backbone. """ return _load_model('deeplabv3plus', 'resnet50', num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone) def deeplabv3plus_resnet101(num_classes=21, output_stride=8, pretrained_backbone=True): """Constructs a DeepLabV3+ model with a ResNet-101 backbone. Args: num_classes (int): number of classes. output_stride (int): output stride for deeplab. pretrained_backbone (bool): If True, use the pretrained backbone. """ return _load_model('deeplabv3plus', 'resnet101', num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone) def deeplabv3plus_mobilenet(num_classes=21, output_stride=8, pretrained_backbone=True): """Constructs a DeepLabV3+ model with a MobileNetv2 backbone. Args: num_classes (int): number of classes. output_stride (int): output stride for deeplab. pretrained_backbone (bool): If True, use the pretrained backbone. """ return _load_model('deeplabv3plus', 'mobilenetv2', num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone) def deeplabv3plus_xception(num_classes=21, output_stride=8, pretrained_backbone=True): """Constructs a DeepLabV3+ model with a Xception backbone. Args: num_classes (int): number of classes. output_stride (int): output stride for deeplab. pretrained_backbone (bool): If True, use the pretrained backbone. """ return _load_model('deeplabv3plus', 'xception', num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone)