import os import sys import tarfile import collections import torch.utils.data as data import shutil import numpy as np from PIL import Image from torchvision.datasets.utils import download_url, check_integrity DATASET_YEAR_DICT = { '2012': { 'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar', 'filename': 'VOCtrainval_11-May-2012.tar', 'md5': '6cd6e144f989b92b3379bac3b3de84fd', 'base_dir': 'VOCdevkit/VOC2012' }, '2011': { 'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar', 'filename': 'VOCtrainval_25-May-2011.tar', 'md5': '6c3384ef61512963050cb5d687e5bf1e', 'base_dir': 'TrainVal/VOCdevkit/VOC2011' }, '2010': { 'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar', 'filename': 'VOCtrainval_03-May-2010.tar', 'md5': 'da459979d0c395079b5c75ee67908abb', 'base_dir': 'VOCdevkit/VOC2010' }, '2009': { 'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2009/VOCtrainval_11-May-2009.tar', 'filename': 'VOCtrainval_11-May-2009.tar', 'md5': '59065e4b188729180974ef6572f6a212', 'base_dir': 'VOCdevkit/VOC2009' }, '2008': { 'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2008/VOCtrainval_14-Jul-2008.tar', 'filename': 'VOCtrainval_11-May-2012.tar', 'md5': '2629fa636546599198acfcfbfcf1904a', 'base_dir': 'VOCdevkit/VOC2008' }, '2007': { 'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar', 'filename': 'VOCtrainval_06-Nov-2007.tar', 'md5': 'c52e279531787c972589f7e41ab4ae64', 'base_dir': 'VOCdevkit/VOC2007' } } def voc_cmap(N=256, normalized=False): def bitget(byteval, idx): return ((byteval & (1 << idx)) != 0) dtype = 'float32' if normalized else 'uint8' cmap = np.zeros((N, 3), dtype=dtype) for i in range(N): r = g = b = 0 c = i for j in range(8): r = r | (bitget(c, 0) << 7-j) g = g | (bitget(c, 1) << 7-j) b = b | (bitget(c, 2) << 7-j) c = c >> 3 cmap[i] = np.array([r, g, b]) cmap = cmap/255 if normalized else cmap return cmap class VOCSegmentation(data.Dataset): """`Pascal VOC `_ Segmentation Dataset. Args: root (string): Root directory of the VOC Dataset. year (string, optional): The dataset year, supports years 2007 to 2012. image_set (string, optional): Select the image_set to use, ``train``, ``trainval`` or ``val`` download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` """ cmap = voc_cmap() def __init__(self, root, year='2012', image_set='train', download=False, transform=None): is_aug=False if year=='2012_aug': is_aug = True year = '2012' self.root = os.path.expanduser(root) self.year = year self.url = DATASET_YEAR_DICT[year]['url'] self.filename = DATASET_YEAR_DICT[year]['filename'] self.md5 = DATASET_YEAR_DICT[year]['md5'] self.transform = transform self.image_set = image_set base_dir = DATASET_YEAR_DICT[year]['base_dir'] voc_root = os.path.join(self.root, base_dir) image_dir = os.path.join(voc_root, 'JPEGImages') if download: download_extract(self.url, self.root, self.filename, self.md5) if not os.path.isdir(voc_root): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') if is_aug and image_set=='train': mask_dir = os.path.join(voc_root, 'SegmentationClassAug') assert os.path.exists(mask_dir), "SegmentationClassAug not found, please refer to README.md and prepare it manually" split_f = os.path.join( self.root, 'train_aug.txt')#'./datasets/data/train_aug.txt' else: mask_dir = os.path.join(voc_root, 'SegmentationClass') splits_dir = os.path.join(voc_root, 'ImageSets/Segmentation') split_f = os.path.join(splits_dir, image_set.rstrip('\n') + '.txt') if not os.path.exists(split_f): raise ValueError( 'Wrong image_set entered! Please use image_set="train" ' 'or image_set="trainval" or image_set="val"') with open(os.path.join(split_f), "r") as f: file_names = [x.strip() for x in f.readlines()] self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names] self.masks = [os.path.join(mask_dir, x + ".png") for x in file_names] assert (len(self.images) == len(self.masks)) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is the image segmentation. """ img = Image.open(self.images[index]).convert('RGB') target = Image.open(self.masks[index]) if self.transform is not None: img, target = self.transform(img, target) return img, target def __len__(self): return len(self.images) @classmethod def decode_target(cls, mask): """decode semantic mask to RGB image""" return cls.cmap[mask] def download_extract(url, root, filename, md5): download_url(url, root, filename, md5) with tarfile.open(os.path.join(root, filename), "r") as tar: tar.extractall(path=root)