File size: 2,584 Bytes
ac6f53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
license: bsd-3-clause
base_model: Salesforce/blip-image-captioning-base
tags:
- generated_from_trainer
model-index:
- name: BLIP_Captioning
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BLIP_Captioning

This model is a fine-tuned version of [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0201

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.047         | 0.0446 | 500   | 0.0336          |
| 0.0379        | 0.0892 | 1000  | 0.0419          |
| 0.0285        | 0.1339 | 1500  | 0.0247          |
| 0.0247        | 0.1785 | 2000  | 0.0254          |
| 0.0244        | 0.2231 | 2500  | 0.0238          |
| 0.0242        | 0.2677 | 3000  | 0.0240          |
| 0.0239        | 0.3124 | 3500  | 0.0234          |
| 0.0243        | 0.3570 | 4000  | 0.0235          |
| 0.0502        | 0.4016 | 4500  | 0.0350          |
| 0.0236        | 0.4462 | 5000  | 0.0227          |
| 0.0228        | 0.4909 | 5500  | 0.0228          |
| 0.0225        | 0.5355 | 6000  | 0.0249          |
| 0.0232        | 0.5801 | 6500  | 0.0846          |
| 0.0222        | 0.6247 | 7000  | 0.0223          |
| 0.023         | 0.6693 | 7500  | 0.0213          |
| 0.0217        | 0.7140 | 8000  | 0.0211          |
| 0.0212        | 0.7586 | 8500  | 0.0210          |
| 0.0213        | 0.8032 | 9000  | 0.0207          |
| 0.0217        | 0.8478 | 9500  | 0.0204          |
| 0.0203        | 0.8925 | 10000 | 0.0208          |
| 0.0205        | 0.9371 | 10500 | 0.0206          |
| 0.0207        | 0.9817 | 11000 | 0.0201          |


### Framework versions

- Transformers 4.55.4
- Pytorch 2.1.2+cu121
- Tokenizers 0.21.4