--- library_name: transformers license: mit base_model: deepset/gbert-large tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: task2_flausch_classification_gbert-large_span_classifier_with_nonspan results: [] --- # task2_flausch_classification_gbert-large_span_classifier_with_nonspan This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2307 - Accuracy: 0.9479 - F1: 0.9467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:| | 0.3749 | 0.2697 | 1000 | 0.3099 | 0.9149 | 0.9174 | | 0.2804 | 0.5394 | 2000 | 0.2330 | 0.9371 | 0.9305 | | 0.2672 | 0.8091 | 3000 | 0.2369 | 0.9391 | 0.9339 | | 0.2248 | 1.0787 | 4000 | 0.2295 | 0.9427 | 0.9406 | | 0.1942 | 1.3484 | 5000 | 0.2244 | 0.9452 | 0.9422 | | 0.1873 | 1.6181 | 6000 | 0.2310 | 0.9423 | 0.9393 | | 0.1768 | 1.8878 | 7000 | 0.2155 | 0.9469 | 0.9450 | | 0.1443 | 2.1575 | 8000 | 0.2295 | 0.9454 | 0.9449 | | 0.1198 | 2.4272 | 9000 | 0.2295 | 0.9484 | 0.9474 | | 0.1238 | 2.6969 | 10000 | 0.2278 | 0.9479 | 0.9469 | | 0.1166 | 2.9666 | 11000 | 0.2307 | 0.9479 | 0.9467 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1