Upload folder using huggingface_hub
Browse files- .gitattributes +3 -0
- README.md +137 -3
- added_tokens.json +30 -0
- asset/R-4B.png +3 -0
- asset/performance.png +3 -0
- chat_template.jinja +11 -0
- config.json +94 -0
- configuration_r.py +101 -0
- generation_config.json +6 -0
- image_processing_r.py +499 -0
- image_processing_r_fast.py +324 -0
- merges.txt +0 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +834 -0
- modeling_r.py +770 -0
- preprocessor_config.json +51 -0
- processing_xvl.py +244 -0
- processor_config.json +12 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +256 -0
- video_preprocessor_config.json +26 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
asset/R-4B.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
asset/performance.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,137 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- Qwen/Qwen3-4B
|
7 |
+
pipeline_tag: visual-question-answering
|
8 |
+
---
|
9 |
+
# R-4B
|
10 |
+
|
11 |
+
[[📚 Arxiv Paper (Coming soon)](https://huggingface.co/YannQi/R-4B))] [[🤗 Hugging Face](https://huggingface.co/YannQi/R-4B)] [[🤖️ ModelScope](https://huggingface.co/YannQi/R-4B)] [[💻 Code](https://github.com/yannqi/R-4B)]
|
12 |
+
|
13 |
+
<div align="center">
|
14 |
+
<img src="asset/R-4B.png" width="100%" alt="R-4B Performance">
|
15 |
+
</div>
|
16 |
+
|
17 |
+
## ⭐️ Introduction
|
18 |
+
|
19 |
+
In this report, we present **R-4B**, a multimodal large language model designed to achieve adaptive multimodal reasoning—dynamically choosing between step-by-step thinking and direct response generation based on task complexity. This capability enables R-4B to deliver high-quality responses while significantly improving inference efficiency and reducing computational costs.
|
20 |
+
|
21 |
+
The development of R-4B follows a two-stage training paradigm:
|
22 |
+
(1) Dual-Capability Pretraining, which establishes both thinking and non-thinking capabilities for VQA; and
|
23 |
+
(2) Adaptive Thinking Post-Training, which enables the model to adaptively switch between modes based on input demands.
|
24 |
+
|
25 |
+
R-4B achieves state-of-the-art performance among models of its scale. In evaluations across multiple public benchmarks, R-4B outperforms Qwen2.5-VL-7B on nearly all tasks. Notably, it matches or exceeds the performance of the much larger Kimi-VL-Thinking-2506 (3B activated, 16B total parameters).
|
26 |
+
|
27 |
+
## 🔥 Quickstart
|
28 |
+
|
29 |
+
Below, we provide simple examples to show how to use R-4B with 🤗 Transformers.
|
30 |
+
|
31 |
+
<!-- The code of R-4B has been in the latest Hugging face transformers and we advise you to build from source with command: (Coming Soon!)
|
32 |
+
|
33 |
+
```
|
34 |
+
pip install git+https://github.com/huggingface/transformers accelerate
|
35 |
+
``` -->
|
36 |
+
|
37 |
+
### Using 🤗 Transformers to Chat
|
38 |
+
|
39 |
+
> [!NOTE]
|
40 |
+
> Following Qwen3, we also offer a hard switch mechanism that lets users dynamically control the model's behavior.
|
41 |
+
|
42 |
+
```python
|
43 |
+
import requests
|
44 |
+
import torch
|
45 |
+
from transformers import AutoModel, AutoProcessor
|
46 |
+
|
47 |
+
|
48 |
+
model_path = "YannQi/R-4B"
|
49 |
+
|
50 |
+
from PIL import Image
|
51 |
+
model = AutoModel.from_pretrained(
|
52 |
+
model_path,
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
trust_remote_code=True,
|
55 |
+
).to('cuda')
|
56 |
+
|
57 |
+
# default processer
|
58 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
59 |
+
|
60 |
+
|
61 |
+
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
62 |
+
messages = [
|
63 |
+
{
|
64 |
+
"role": "user",
|
65 |
+
"content": [
|
66 |
+
{
|
67 |
+
"type": "image",
|
68 |
+
"image": f"{image_file}",
|
69 |
+
},
|
70 |
+
{"type": "text", "text": "描述该图片。"},
|
71 |
+
],
|
72 |
+
}
|
73 |
+
]
|
74 |
+
|
75 |
+
# Preparation for inference
|
76 |
+
|
77 |
+
text_auto_thinking = processor.apply_chat_template(
|
78 |
+
messages, tokenize=False, add_generation_prompt=True) # thinking_mode='long' for thinking mode; thinking_mode='short' for non-thinking mode; Defalut is auto-thinking mode.
|
79 |
+
|
80 |
+
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
81 |
+
|
82 |
+
inputs_auto_thinking = processor(images=raw_image, text=text_auto_thinking, return_tensors='pt').to(0, torch.float16)
|
83 |
+
|
84 |
+
inputs_auto_thinking = inputs_auto_thinking.to("cuda")
|
85 |
+
|
86 |
+
|
87 |
+
# Inference: Generation of the output
|
88 |
+
|
89 |
+
|
90 |
+
generated_ids_auto_thinking = model.generate(**inputs_auto_thinking, max_new_tokens=8192)
|
91 |
+
generated_ids_trimmed_auto_thinking = [
|
92 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs_auto_thinking.input_ids, generated_ids_auto_thinking)
|
93 |
+
]
|
94 |
+
|
95 |
+
|
96 |
+
output_text_auto_thinking = processor.batch_decode(
|
97 |
+
generated_ids_trimmed_auto_thinking, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
+
print("Auto Thinking Output:", output_text_auto_thinking)
|
102 |
+
|
103 |
+
```
|
104 |
+
|
105 |
+
</details>
|
106 |
+
|
107 |
+
## 📈 Experimental Results
|
108 |
+
|
109 |
+
<div align="center">
|
110 |
+
<img src="asset/performance.png" width="100%" alt="R-4B Performance">
|
111 |
+
</div>
|
112 |
+
|
113 |
+
1. R-4B establishes itself with powerful, state-of-the-art perceptual abilities that are competitive with larger models.
|
114 |
+
2. In evaluation sets that require complex logical reasoning and mathematical problem-solving, such as WeMath, MathVerse, and LogicVista, R-4B displays a strong performance curve. This highlights its advanced adaptive thinking capacity for logical deduction and solving complex quantitative problems.
|
115 |
+
|
116 |
+
## ✒️ Citation
|
117 |
+
|
118 |
+
Coming soon!
|
119 |
+
|
120 |
+
<!-- If you find our work helpful for your research, please consider citing our work. -->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
```bibtex
|
124 |
+
@misc{R-4B,
|
125 |
+
title={R-4B: Adaptive Vision-Language Reasoning for Efficient Inference},
|
126 |
+
author={Z},
|
127 |
+
year={2025},
|
128 |
+
eprint={ },
|
129 |
+
archivePrefix={arXiv},
|
130 |
+
primaryClass={cs.CV},
|
131 |
+
url={ },
|
132 |
+
}
|
133 |
+
``` -->
|
134 |
+
|
135 |
+
## Acknowledgement
|
136 |
+
|
137 |
+
R-4B is developed based on the codebases of the following projects: [LLaVA-Next](https://github.com/LLaVA-VL/LLaVA-NeXT), [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384), [Qwen3](https://github.com/QwenLM/Qwen3), [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL), [VLMEvalKit](https://github.com/open-compass/VLMEvalKit). We sincerely thank these projects for their outstanding work.
|
added_tokens.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<image>": 151669,
|
6 |
+
"<think>": 151667,
|
7 |
+
"<tool_call>": 151657,
|
8 |
+
"<tool_response>": 151665,
|
9 |
+
"<video>": 151670,
|
10 |
+
"<|box_end|>": 151649,
|
11 |
+
"<|box_start|>": 151648,
|
12 |
+
"<|endoftext|>": 151643,
|
13 |
+
"<|file_sep|>": 151664,
|
14 |
+
"<|fim_middle|>": 151660,
|
15 |
+
"<|fim_pad|>": 151662,
|
16 |
+
"<|fim_prefix|>": 151659,
|
17 |
+
"<|fim_suffix|>": 151661,
|
18 |
+
"<|im_end|>": 151645,
|
19 |
+
"<|im_start|>": 151644,
|
20 |
+
"<|image_pad|>": 151655,
|
21 |
+
"<|object_ref_end|>": 151647,
|
22 |
+
"<|object_ref_start|>": 151646,
|
23 |
+
"<|quad_end|>": 151651,
|
24 |
+
"<|quad_start|>": 151650,
|
25 |
+
"<|repo_name|>": 151663,
|
26 |
+
"<|video_pad|>": 151656,
|
27 |
+
"<|vision_end|>": 151653,
|
28 |
+
"<|vision_pad|>": 151654,
|
29 |
+
"<|vision_start|>": 151652
|
30 |
+
}
|
asset/R-4B.png
ADDED
![]() |
Git LFS Details
|
asset/performance.png
ADDED
![]() |
Git LFS Details
|
chat_template.jinja
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{% for message in messages %}{{'<|im_start|>' + message['role'] + '
|
2 |
+
'}}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>
|
3 |
+
' }}{% endfor %}{# Render all video then #}{% for content in message['content'] | selectattr('type', 'equalto', 'video') %}{{ '<video>
|
4 |
+
' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] }}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] }}{% endgeneration %}{% endfor %}{% endif %}{{'<|im_end|>' + '
|
5 |
+
'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant
|
6 |
+
<think>' }}{% endif %}{%- if add_generation_prompt %}{%- if thinking_mode is defined and thinking_mode == 'short' %}{{- '
|
7 |
+
|
8 |
+
</think>
|
9 |
+
|
10 |
+
' }}{%- endif %}{%- if thinking_mode is defined and thinking_mode == 'long' %}{{- '
|
11 |
+
' }}{%- endif %}{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoConfig": "configuration_r.RConfig",
|
4 |
+
"AutoModel": "modeling_r.RForConditionalGeneration",
|
5 |
+
"AutoModelForCausalLM": "modeling_r.RForConditionalGeneration"
|
6 |
+
},
|
7 |
+
"architectures": [
|
8 |
+
"RForConditionalGeneration"
|
9 |
+
],
|
10 |
+
"eos_token_id": 151645,
|
11 |
+
"image_grid_pinpoints": [
|
12 |
+
[
|
13 |
+
384,
|
14 |
+
768
|
15 |
+
],
|
16 |
+
[
|
17 |
+
768,
|
18 |
+
384
|
19 |
+
],
|
20 |
+
[
|
21 |
+
768,
|
22 |
+
768
|
23 |
+
],
|
24 |
+
[
|
25 |
+
1152,
|
26 |
+
384
|
27 |
+
],
|
28 |
+
[
|
29 |
+
384,
|
30 |
+
1152
|
31 |
+
]
|
32 |
+
],
|
33 |
+
"image_token_index": 151669,
|
34 |
+
"model_type": "R",
|
35 |
+
"multimodal_projector_bias": true,
|
36 |
+
"pad_token_id": 151643,
|
37 |
+
"projector_hidden_act": "gelu",
|
38 |
+
"text_config": {
|
39 |
+
"_name_or_path": "Qwen/Qwen3-4B",
|
40 |
+
"architectures": [
|
41 |
+
"Qwen3ForCausalLM"
|
42 |
+
],
|
43 |
+
"attention_bias": false,
|
44 |
+
"attention_dropout": 0.0,
|
45 |
+
"bos_token_id": 151643,
|
46 |
+
"eos_token_id": 151645,
|
47 |
+
"head_dim": 128,
|
48 |
+
"hidden_act": "silu",
|
49 |
+
"hidden_size": 2560,
|
50 |
+
"initializer_range": 0.02,
|
51 |
+
"intermediate_size": 9728,
|
52 |
+
"max_position_embeddings": 40960,
|
53 |
+
"max_window_layers": 36,
|
54 |
+
"model_type": "qwen3",
|
55 |
+
"num_attention_heads": 32,
|
56 |
+
"num_hidden_layers": 36,
|
57 |
+
"num_key_value_heads": 8,
|
58 |
+
"rms_norm_eps": 1e-06,
|
59 |
+
"rope_scaling": null,
|
60 |
+
"rope_theta": 1000000,
|
61 |
+
"sliding_window": null,
|
62 |
+
"tie_word_embeddings": true,
|
63 |
+
"torch_dtype": "float32",
|
64 |
+
"use_cache": true,
|
65 |
+
"use_sliding_window": false,
|
66 |
+
"vocab_size": 152000
|
67 |
+
},
|
68 |
+
"tie_word_embeddings": true,
|
69 |
+
"torch_dtype": "float32",
|
70 |
+
"transformers_version": "4.52.0",
|
71 |
+
"use_image_newline_parameter": true,
|
72 |
+
"video_token_index": 151670,
|
73 |
+
"vision_aspect_ratio": "anyres",
|
74 |
+
"vision_config": {
|
75 |
+
"auto_map": {
|
76 |
+
"AutoConfig": "configuration_r.RConfig"
|
77 |
+
},
|
78 |
+
"attention_dropout": 0.0,
|
79 |
+
"hidden_act": "gelu_pytorch_tanh",
|
80 |
+
"hidden_size": 1152,
|
81 |
+
"image_size": 384,
|
82 |
+
"intermediate_size": 4304,
|
83 |
+
"layer_norm_eps": 1e-06,
|
84 |
+
"model_type": "siglip_vision_model",
|
85 |
+
"num_attention_heads": 16,
|
86 |
+
"num_channels": 3,
|
87 |
+
"num_hidden_layers": 26,
|
88 |
+
"patch_size": 14,
|
89 |
+
"torch_dtype": "float32",
|
90 |
+
"vision_use_head": false
|
91 |
+
},
|
92 |
+
"vision_feature_layer": -1,
|
93 |
+
"vision_feature_select_strategy": "full"
|
94 |
+
}
|
configuration_r.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from transformers.configuration_utils import PretrainedConfig
|
17 |
+
from transformers.utils import (
|
18 |
+
logging,
|
19 |
+
)
|
20 |
+
from transformers.models.auto import CONFIG_MAPPING, AutoConfig
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class RConfig(PretrainedConfig):
|
27 |
+
model_type = "R"
|
28 |
+
attribute_map = {
|
29 |
+
"image_token_id": "image_token_index",
|
30 |
+
"video_token_id": "video_token_index",
|
31 |
+
}
|
32 |
+
sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig}
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
vision_config=None,
|
37 |
+
text_config=None,
|
38 |
+
image_token_index=151646,
|
39 |
+
video_token_index=151647,
|
40 |
+
projector_hidden_act="gelu",
|
41 |
+
vision_feature_select_strategy="full",
|
42 |
+
vision_feature_layer=-1,
|
43 |
+
vision_aspect_ratio= "anyres",
|
44 |
+
image_grid_pinpoints=None,
|
45 |
+
tie_word_embeddings=False,
|
46 |
+
multimodal_projector_bias=True,
|
47 |
+
max_position_embeddings=32768,
|
48 |
+
**kwargs,
|
49 |
+
):
|
50 |
+
self.image_token_index = image_token_index
|
51 |
+
self.video_token_index = video_token_index
|
52 |
+
self.projector_hidden_act = projector_hidden_act
|
53 |
+
self.multimodal_projector_bias = multimodal_projector_bias
|
54 |
+
|
55 |
+
if vision_feature_select_strategy not in ["default", "full"]:
|
56 |
+
raise ValueError(
|
57 |
+
"vision_feature_select_strategy should be one of 'default', 'full'."
|
58 |
+
f"Got: {vision_feature_select_strategy}"
|
59 |
+
)
|
60 |
+
|
61 |
+
self.vision_feature_select_strategy = vision_feature_select_strategy
|
62 |
+
self.vision_feature_layer = vision_feature_layer
|
63 |
+
self.vision_aspect_ratio = vision_aspect_ratio
|
64 |
+
|
65 |
+
image_grid_pinpoints = (
|
66 |
+
image_grid_pinpoints
|
67 |
+
if image_grid_pinpoints is not None
|
68 |
+
else [[384, 768], [768, 384], [768, 768], [1152, 384], [384, 1152]]
|
69 |
+
)
|
70 |
+
self.image_grid_pinpoints = image_grid_pinpoints
|
71 |
+
|
72 |
+
if isinstance(vision_config, dict):
|
73 |
+
vision_config["model_type"] = (
|
74 |
+
vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model"
|
75 |
+
)
|
76 |
+
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
|
77 |
+
elif vision_config is None:
|
78 |
+
vision_config = CONFIG_MAPPING["siglip_vision_model"](
|
79 |
+
hidden_size=1152,
|
80 |
+
intermediate_size=4304,
|
81 |
+
patch_size=14,
|
82 |
+
image_size=384,
|
83 |
+
num_hidden_layers=26,
|
84 |
+
num_attention_heads=14,
|
85 |
+
vision_use_head=False,
|
86 |
+
)
|
87 |
+
|
88 |
+
self.vision_config = vision_config
|
89 |
+
|
90 |
+
if isinstance(text_config, dict):
|
91 |
+
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen2"
|
92 |
+
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
93 |
+
elif text_config is None:
|
94 |
+
text_config = CONFIG_MAPPING["qwen2"]()
|
95 |
+
|
96 |
+
self.text_config = text_config
|
97 |
+
|
98 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
99 |
+
|
100 |
+
|
101 |
+
__all__ = ["RConfig"]
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 151643,
|
4 |
+
"eos_token_id": 151645,
|
5 |
+
"transformers_version": "4.54.1"
|
6 |
+
}
|
image_processing_r.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from collections.abc import Iterable
|
17 |
+
from typing import Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from transformers.image_processing_utils import (
|
22 |
+
BaseImageProcessor,
|
23 |
+
BatchFeature,
|
24 |
+
get_patch_output_size,
|
25 |
+
get_size_dict,
|
26 |
+
select_best_resolution,
|
27 |
+
)
|
28 |
+
from transformers.image_transforms import (
|
29 |
+
PaddingMode,
|
30 |
+
convert_to_rgb,
|
31 |
+
pad,
|
32 |
+
resize,
|
33 |
+
to_channel_dimension_format,
|
34 |
+
)
|
35 |
+
from transformers.image_utils import (
|
36 |
+
OPENAI_CLIP_MEAN,
|
37 |
+
OPENAI_CLIP_STD,
|
38 |
+
ChannelDimension,
|
39 |
+
ImageInput,
|
40 |
+
PILImageResampling,
|
41 |
+
get_image_size,
|
42 |
+
infer_channel_dimension_format,
|
43 |
+
is_scaled_image,
|
44 |
+
make_flat_list_of_images,
|
45 |
+
to_numpy_array,
|
46 |
+
valid_images,
|
47 |
+
validate_preprocess_arguments,
|
48 |
+
)
|
49 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
50 |
+
|
51 |
+
|
52 |
+
logger = logging.get_logger(__name__)
|
53 |
+
|
54 |
+
|
55 |
+
if is_vision_available():
|
56 |
+
from PIL import Image
|
57 |
+
|
58 |
+
|
59 |
+
# Copied from transformers.models.llava_next.image_processing_llava_next.divide_to_patches
|
60 |
+
def divide_to_patches(image: np.array, patch_size: int, input_data_format) -> list[np.array]:
|
61 |
+
"""
|
62 |
+
Divides an image into patches of a specified size.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
image (`np.array`):
|
66 |
+
The input image.
|
67 |
+
patch_size (`int`):
|
68 |
+
The size of each patch.
|
69 |
+
input_data_format (`ChannelDimension` or `str`):
|
70 |
+
The channel dimension format of the input image.
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
list: A list of np.array representing the patches.
|
74 |
+
"""
|
75 |
+
patches = []
|
76 |
+
height, width = get_image_size(image, channel_dim=input_data_format)
|
77 |
+
for i in range(0, height, patch_size):
|
78 |
+
for j in range(0, width, patch_size):
|
79 |
+
if input_data_format == ChannelDimension.LAST:
|
80 |
+
patch = image[i : i + patch_size, j : j + patch_size]
|
81 |
+
else:
|
82 |
+
patch = image[:, i : i + patch_size, j : j + patch_size]
|
83 |
+
patches.append(patch)
|
84 |
+
|
85 |
+
return patches
|
86 |
+
|
87 |
+
|
88 |
+
# Copied from transformers.models.llava_next.image_processing_llava_next.expand_to_square
|
89 |
+
def expand_to_square(image: np.array, background_color, input_data_format) -> np.array:
|
90 |
+
"""
|
91 |
+
Expands an image to a square by adding a background color.
|
92 |
+
"""
|
93 |
+
|
94 |
+
height, width = get_image_size(image, channel_dim=input_data_format)
|
95 |
+
if width == height:
|
96 |
+
return image
|
97 |
+
elif width > height:
|
98 |
+
result = np.ones((width, width, image.shape[2]), dtype=image.dtype) * background_color
|
99 |
+
result[(width - height) // 2 : (width - height) // 2 + height, :] = image
|
100 |
+
return result
|
101 |
+
else:
|
102 |
+
result = np.ones((height, height, image.shape[2]), dtype=image.dtype) * background_color
|
103 |
+
result[:, (height - width) // 2 : (height - width) // 2 + width] = image
|
104 |
+
return result
|
105 |
+
|
106 |
+
|
107 |
+
class RImageProcessor(BaseImageProcessor):
|
108 |
+
model_input_names = ["pixel_values_videos"]
|
109 |
+
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
do_resize: bool = True,
|
113 |
+
size: Optional[dict[str, int]] = None,
|
114 |
+
image_grid_pinpoints: Optional[list] = None,
|
115 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
116 |
+
do_rescale: bool = True,
|
117 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
118 |
+
do_normalize: bool = True,
|
119 |
+
image_mean: Optional[Union[float, list[float]]] = None,
|
120 |
+
image_std: Optional[Union[float, list[float]]] = None,
|
121 |
+
do_pad: Optional[bool] = True,
|
122 |
+
do_convert_rgb: bool = True,
|
123 |
+
**kwargs,
|
124 |
+
) -> None:
|
125 |
+
super().__init__(**kwargs)
|
126 |
+
size = size if size is not None else {"height": 384, "width": 384}
|
127 |
+
size = get_size_dict(size, default_to_square=False)
|
128 |
+
image_grid_pinpoints = (
|
129 |
+
image_grid_pinpoints
|
130 |
+
if image_grid_pinpoints is not None
|
131 |
+
else [[384, 768], [768, 384], [768, 768], [1152, 384], [384, 1152]]
|
132 |
+
)
|
133 |
+
self.do_resize = do_resize
|
134 |
+
self.size = size
|
135 |
+
self.image_grid_pinpoints = image_grid_pinpoints
|
136 |
+
self.resample = resample
|
137 |
+
self.do_rescale = do_rescale
|
138 |
+
self.rescale_factor = rescale_factor
|
139 |
+
self.do_normalize = do_normalize
|
140 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
141 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
142 |
+
self.do_pad = do_pad
|
143 |
+
self.do_convert_rgb = do_convert_rgb
|
144 |
+
|
145 |
+
# Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor.pad
|
146 |
+
def pad(
|
147 |
+
self,
|
148 |
+
image: np.ndarray,
|
149 |
+
padding: Union[int, tuple[int, int], Iterable[tuple[int, int]]],
|
150 |
+
mode: PaddingMode = PaddingMode.CONSTANT,
|
151 |
+
constant_values: Union[float, Iterable[float]] = 0.0,
|
152 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
153 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
154 |
+
) -> np.ndarray:
|
155 |
+
|
156 |
+
# call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim
|
157 |
+
if isinstance(padding, int) or len(padding) != 4:
|
158 |
+
return pad(image, padding, mode, constant_values, data_format, input_data_format)
|
159 |
+
|
160 |
+
if input_data_format is None:
|
161 |
+
input_data_format = infer_channel_dimension_format(image)
|
162 |
+
if mode == PaddingMode.CONSTANT:
|
163 |
+
image = np.pad(image, padding, mode="constant", constant_values=constant_values)
|
164 |
+
elif mode == PaddingMode.REFLECT:
|
165 |
+
image = np.pad(image, padding, mode="reflect")
|
166 |
+
elif mode == PaddingMode.REPLICATE:
|
167 |
+
image = np.pad(image, padding, mode="edge")
|
168 |
+
elif mode == PaddingMode.SYMMETRIC:
|
169 |
+
image = np.pad(image, padding, mode="symmetric")
|
170 |
+
else:
|
171 |
+
raise ValueError(f"Invalid padding mode: {mode}")
|
172 |
+
image = (
|
173 |
+
to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
|
174 |
+
)
|
175 |
+
return image
|
176 |
+
|
177 |
+
# Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._resize_for_patching
|
178 |
+
def _resize_for_patching(
|
179 |
+
self, image: np.array, target_resolution: tuple, resample, input_data_format: ChannelDimension
|
180 |
+
) -> np.array:
|
181 |
+
new_height, new_width = get_patch_output_size(image, target_resolution, input_data_format)
|
182 |
+
|
183 |
+
# Resize the image
|
184 |
+
resized_image = resize(image, (new_height, new_width), resample=resample, input_data_format=input_data_format)
|
185 |
+
|
186 |
+
return resized_image
|
187 |
+
|
188 |
+
# Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._get_padding_size
|
189 |
+
def _get_padding_size(self, original_resolution: tuple, target_resolution: tuple):
|
190 |
+
original_height, original_width = original_resolution
|
191 |
+
target_height, target_width = target_resolution
|
192 |
+
paste_x, r_x = divmod(target_width - original_width, 2)
|
193 |
+
paste_y, r_y = divmod(target_height - original_height, 2)
|
194 |
+
return (paste_y, paste_y + r_y), (paste_x, paste_x + r_x)
|
195 |
+
|
196 |
+
# Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._pad_for_patching
|
197 |
+
def _pad_for_patching(
|
198 |
+
self, image: np.array, target_resolution: tuple, input_data_format: ChannelDimension
|
199 |
+
) -> np.array:
|
200 |
+
"""
|
201 |
+
Pad an image to a target resolution while maintaining aspect ratio.
|
202 |
+
"""
|
203 |
+
new_resolution = get_patch_output_size(image, target_resolution, input_data_format)
|
204 |
+
padding = self._get_padding_size(new_resolution, target_resolution)
|
205 |
+
|
206 |
+
padded_image = self.pad(image, padding=padding)
|
207 |
+
|
208 |
+
return padded_image
|
209 |
+
|
210 |
+
# Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor.get_image_patches
|
211 |
+
def get_image_patches(
|
212 |
+
self,
|
213 |
+
image: np.array,
|
214 |
+
grid_pinpoints,
|
215 |
+
size: tuple,
|
216 |
+
patch_size: int,
|
217 |
+
resample: PILImageResampling,
|
218 |
+
data_format: ChannelDimension,
|
219 |
+
input_data_format: ChannelDimension,
|
220 |
+
) -> list[np.array]:
|
221 |
+
if not isinstance(grid_pinpoints, list):
|
222 |
+
raise TypeError("grid_pinpoints must be a list of possible resolutions.")
|
223 |
+
|
224 |
+
possible_resolutions = grid_pinpoints
|
225 |
+
|
226 |
+
image_size = get_image_size(image, channel_dim=input_data_format)
|
227 |
+
best_resolution = select_best_resolution(image_size, possible_resolutions)
|
228 |
+
resized_image = self._resize_for_patching(
|
229 |
+
image, best_resolution, resample=resample, input_data_format=input_data_format
|
230 |
+
)
|
231 |
+
padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=input_data_format)
|
232 |
+
|
233 |
+
patches = divide_to_patches(padded_image, patch_size=patch_size, input_data_format=input_data_format)
|
234 |
+
|
235 |
+
# make sure that all patches are in the input data format
|
236 |
+
patches = [
|
237 |
+
to_channel_dimension_format(patch, channel_dim=data_format, input_channel_dim=input_data_format)
|
238 |
+
for patch in patches
|
239 |
+
]
|
240 |
+
|
241 |
+
resized_original_image = resize(
|
242 |
+
image,
|
243 |
+
size=size,
|
244 |
+
resample=resample,
|
245 |
+
data_format=data_format,
|
246 |
+
input_data_format=input_data_format,
|
247 |
+
)
|
248 |
+
|
249 |
+
image_patches = [resized_original_image] + patches
|
250 |
+
|
251 |
+
return image_patches
|
252 |
+
|
253 |
+
# Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._pad_for_batching
|
254 |
+
def _pad_for_batching(
|
255 |
+
self,
|
256 |
+
pixel_values: list[np.ndarray],
|
257 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
258 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
259 |
+
):
|
260 |
+
max_patch = max(len(x) for x in pixel_values)
|
261 |
+
pixel_values = [
|
262 |
+
self.pad(
|
263 |
+
image,
|
264 |
+
padding=((0, max_patch - image.shape[0]), (0, 0), (0, 0), (0, 0)),
|
265 |
+
data_format=data_format,
|
266 |
+
input_data_format=input_data_format,
|
267 |
+
)
|
268 |
+
for image in pixel_values
|
269 |
+
]
|
270 |
+
|
271 |
+
return pixel_values
|
272 |
+
|
273 |
+
# Copied from transformers.models.llava.image_processing_llava.LlavaImageProcessor.pad_to_square
|
274 |
+
def pad_to_square(
|
275 |
+
self,
|
276 |
+
image: np.ndarray,
|
277 |
+
background_color: Union[int, tuple[int, int, int]] = 0,
|
278 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
279 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
280 |
+
) -> np.array:
|
281 |
+
height, width = get_image_size(image, input_data_format)
|
282 |
+
num_channels = image.shape[0] if input_data_format == ChannelDimension.FIRST else image.shape[-1]
|
283 |
+
|
284 |
+
if height == width:
|
285 |
+
image = (
|
286 |
+
to_channel_dimension_format(image, data_format, input_data_format)
|
287 |
+
if data_format is not None
|
288 |
+
else image
|
289 |
+
)
|
290 |
+
return image
|
291 |
+
|
292 |
+
max_dim = max(height, width)
|
293 |
+
|
294 |
+
# Ensure background_color is the correct shape
|
295 |
+
if isinstance(background_color, int):
|
296 |
+
background_color = [background_color]
|
297 |
+
elif len(background_color) != num_channels:
|
298 |
+
raise ValueError(
|
299 |
+
f"background_color must have no more than {num_channels} elements to match the number of channels"
|
300 |
+
)
|
301 |
+
|
302 |
+
if input_data_format == ChannelDimension.FIRST:
|
303 |
+
result = np.zeros((num_channels, max_dim, max_dim), dtype=image.dtype)
|
304 |
+
for i, color in enumerate(background_color):
|
305 |
+
result[i, :, :] = color
|
306 |
+
if width > height:
|
307 |
+
start = (max_dim - height) // 2
|
308 |
+
result[:, start : start + height, :] = image
|
309 |
+
else:
|
310 |
+
start = (max_dim - width) // 2
|
311 |
+
result[:, :, start : start + width] = image
|
312 |
+
else:
|
313 |
+
result = np.zeros((max_dim, max_dim, num_channels), dtype=image.dtype)
|
314 |
+
for i, color in enumerate(background_color):
|
315 |
+
result[:, :, i] = color
|
316 |
+
if width > height:
|
317 |
+
start = (max_dim - height) // 2
|
318 |
+
result[start : start + height, :, :] = image
|
319 |
+
else:
|
320 |
+
start = (max_dim - width) // 2
|
321 |
+
result[:, start : start + width, :] = image
|
322 |
+
|
323 |
+
image = (
|
324 |
+
to_channel_dimension_format(result, data_format, input_data_format) if data_format is not None else result
|
325 |
+
)
|
326 |
+
return image
|
327 |
+
|
328 |
+
def _preprocess(
|
329 |
+
self,
|
330 |
+
images: ImageInput,
|
331 |
+
do_resize: Optional[bool] = None,
|
332 |
+
size: Optional[dict[str, int]] = None,
|
333 |
+
resample: PILImageResampling = None,
|
334 |
+
do_rescale: Optional[bool] = None,
|
335 |
+
rescale_factor: Optional[float] = None,
|
336 |
+
do_normalize: Optional[bool] = None,
|
337 |
+
image_mean: Optional[Union[float, list[float]]] = None,
|
338 |
+
image_std: Optional[Union[float, list[float]]] = None,
|
339 |
+
do_convert_rgb: Optional[bool] = None,
|
340 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
341 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
342 |
+
) -> Image.Image:
|
343 |
+
if do_resize:
|
344 |
+
images = [
|
345 |
+
resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
346 |
+
for image in images
|
347 |
+
]
|
348 |
+
|
349 |
+
if do_rescale:
|
350 |
+
images = [
|
351 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
352 |
+
for image in images
|
353 |
+
]
|
354 |
+
|
355 |
+
if do_normalize:
|
356 |
+
images = [
|
357 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
358 |
+
for image in images
|
359 |
+
]
|
360 |
+
|
361 |
+
images = [
|
362 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
363 |
+
]
|
364 |
+
|
365 |
+
return images
|
366 |
+
|
367 |
+
def preprocess(
|
368 |
+
self,
|
369 |
+
images: ImageInput,
|
370 |
+
do_resize: Optional[bool] = None,
|
371 |
+
size: Optional[dict[str, int]] = None,
|
372 |
+
image_grid_pinpoints: Optional[list] = None,
|
373 |
+
resample: PILImageResampling = None,
|
374 |
+
do_rescale: Optional[bool] = None,
|
375 |
+
rescale_factor: Optional[float] = None,
|
376 |
+
do_normalize: Optional[bool] = None,
|
377 |
+
image_mean: Optional[Union[float, list[float]]] = None,
|
378 |
+
image_std: Optional[Union[float, list[float]]] = None,
|
379 |
+
do_pad: Optional[bool] = None,
|
380 |
+
do_convert_rgb: Optional[bool] = None,
|
381 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
382 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
383 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
384 |
+
):
|
385 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
386 |
+
size = size if size is not None else self.size
|
387 |
+
size = get_size_dict(size, default_to_square=False)
|
388 |
+
image_grid_pinpoints = image_grid_pinpoints if image_grid_pinpoints is not None else self.image_grid_pinpoints
|
389 |
+
resample = resample if resample is not None else self.resample
|
390 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
391 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
392 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
393 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
394 |
+
image_std = image_std if image_std is not None else self.image_std
|
395 |
+
do_pad = do_pad if do_pad is not None else self.do_pad
|
396 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
397 |
+
|
398 |
+
if isinstance(images, (tuple, list)) and isinstance(images[0], (tuple, list)):
|
399 |
+
# if the first element is a list, we assume that all elements are lists
|
400 |
+
batch_num_images = [len(x) for x in images]
|
401 |
+
elif isinstance(images, (tuple, list)):
|
402 |
+
# treat this as a single-image case for backward compatibility
|
403 |
+
batch_num_images = [1] * len(images)
|
404 |
+
else:
|
405 |
+
batch_num_images = [1]
|
406 |
+
# only single image patching is supported
|
407 |
+
need_patching = [n == 1 for n in batch_num_images for _ in range(n)]
|
408 |
+
|
409 |
+
images = make_flat_list_of_images(images)
|
410 |
+
|
411 |
+
if not valid_images(images):
|
412 |
+
raise ValueError(
|
413 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
414 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
415 |
+
)
|
416 |
+
|
417 |
+
validate_preprocess_arguments(
|
418 |
+
do_rescale=do_rescale,
|
419 |
+
rescale_factor=rescale_factor,
|
420 |
+
do_normalize=do_normalize,
|
421 |
+
image_mean=image_mean,
|
422 |
+
image_std=image_std,
|
423 |
+
do_resize=do_resize,
|
424 |
+
size=size,
|
425 |
+
resample=resample,
|
426 |
+
)
|
427 |
+
|
428 |
+
if do_convert_rgb:
|
429 |
+
images = [convert_to_rgb(image) for image in images]
|
430 |
+
|
431 |
+
# All transformations expect numpy arrays.
|
432 |
+
images = [to_numpy_array(image) for image in images]
|
433 |
+
|
434 |
+
if do_rescale and is_scaled_image(images[0]):
|
435 |
+
logger.warning_once(
|
436 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
437 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
438 |
+
)
|
439 |
+
|
440 |
+
if input_data_format is None:
|
441 |
+
# We assume that all images have the same channel dimension format.
|
442 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
443 |
+
|
444 |
+
size_tuple = (
|
445 |
+
(size["height"], size["width"])
|
446 |
+
if "height" in size and "width" in size
|
447 |
+
else (size["shortest_edge"], size["shortest_edge"])
|
448 |
+
)
|
449 |
+
|
450 |
+
new_images = []
|
451 |
+
image_sizes = [get_image_size(image, channel_dim=input_data_format) for image in images]
|
452 |
+
for i, image in enumerate(images):
|
453 |
+
if need_patching[i]:
|
454 |
+
# convert image into a list of patches
|
455 |
+
# we intentionally use the same data format as the input data format
|
456 |
+
image_patches = self.get_image_patches(
|
457 |
+
image,
|
458 |
+
image_grid_pinpoints,
|
459 |
+
size=size_tuple,
|
460 |
+
patch_size=size_tuple[0],
|
461 |
+
resample=resample,
|
462 |
+
data_format=input_data_format,
|
463 |
+
input_data_format=input_data_format,
|
464 |
+
)
|
465 |
+
else:
|
466 |
+
padded_image = self.pad_to_square(
|
467 |
+
image=image,
|
468 |
+
background_color=tuple(int(x * 255) for x in self.image_mean),
|
469 |
+
input_data_format=input_data_format,
|
470 |
+
)
|
471 |
+
image_patches = [padded_image]
|
472 |
+
|
473 |
+
# preprocess patches
|
474 |
+
pixel_values = self._preprocess(
|
475 |
+
image_patches,
|
476 |
+
do_resize=do_resize,
|
477 |
+
size=size_tuple,
|
478 |
+
resample=resample,
|
479 |
+
do_rescale=do_rescale,
|
480 |
+
rescale_factor=rescale_factor,
|
481 |
+
do_normalize=do_normalize,
|
482 |
+
image_mean=image_mean,
|
483 |
+
image_std=image_std,
|
484 |
+
data_format=data_format,
|
485 |
+
input_data_format=input_data_format,
|
486 |
+
)
|
487 |
+
pixel_values = np.array(pixel_values)
|
488 |
+
new_images.append(pixel_values)
|
489 |
+
|
490 |
+
if do_pad:
|
491 |
+
processed_images = self._pad_for_batching(new_images)
|
492 |
+
|
493 |
+
return BatchFeature(
|
494 |
+
data={"pixel_values": processed_images, "image_sizes": image_sizes, "batch_num_images": batch_num_images},
|
495 |
+
tensor_type=return_tensors,
|
496 |
+
)
|
497 |
+
|
498 |
+
|
499 |
+
__all__ = ["RImageProcessor"]
|
image_processing_r_fast.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from typing import Optional, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
from transformers.image_processing_utils import BatchFeature, get_patch_output_size, select_best_resolution
|
20 |
+
from transformers.image_processing_utils_fast import (
|
21 |
+
BaseImageProcessorFast,
|
22 |
+
DefaultFastImageProcessorKwargs,
|
23 |
+
divide_to_patches,
|
24 |
+
group_images_by_shape,
|
25 |
+
reorder_images,
|
26 |
+
)
|
27 |
+
from transformers.image_utils import (
|
28 |
+
OPENAI_CLIP_MEAN,
|
29 |
+
OPENAI_CLIP_STD,
|
30 |
+
ChannelDimension,
|
31 |
+
ImageInput,
|
32 |
+
PILImageResampling,
|
33 |
+
SizeDict,
|
34 |
+
get_image_size,
|
35 |
+
make_flat_list_of_images,
|
36 |
+
)
|
37 |
+
from transformers.processing_utils import Unpack
|
38 |
+
from transformers.utils import TensorType, auto_docstring, is_torchvision_v2_available
|
39 |
+
|
40 |
+
|
41 |
+
if is_torchvision_v2_available():
|
42 |
+
from torchvision.transforms.v2 import functional as F
|
43 |
+
else:
|
44 |
+
from torchvision.transforms import functional as F
|
45 |
+
|
46 |
+
|
47 |
+
class RFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
|
48 |
+
image_grid_pinpoints: Optional[list[list[int]]]
|
49 |
+
do_pad: Optional[bool]
|
50 |
+
|
51 |
+
|
52 |
+
@auto_docstring
|
53 |
+
class RImageProcessorFast(BaseImageProcessorFast):
|
54 |
+
resample = PILImageResampling.BICUBIC
|
55 |
+
image_mean = OPENAI_CLIP_MEAN
|
56 |
+
image_std = OPENAI_CLIP_STD
|
57 |
+
size = {"height": 384, "width": 384}
|
58 |
+
default_to_square = False
|
59 |
+
crop_size = None
|
60 |
+
do_resize = True
|
61 |
+
do_center_crop = None
|
62 |
+
do_rescale = True
|
63 |
+
do_normalize = True
|
64 |
+
do_convert_rgb = True
|
65 |
+
do_pad = True
|
66 |
+
image_grid_pinpoints = [[384,768],[768,384],[768,768],[1152,384],[384,1152]],
|
67 |
+
valid_kwargs = RFastImageProcessorKwargs
|
68 |
+
model_input_names = ["pixel_values_videos"]
|
69 |
+
|
70 |
+
def __init__(self, **kwargs: Unpack[RFastImageProcessorKwargs]):
|
71 |
+
super().__init__(**kwargs)
|
72 |
+
|
73 |
+
@auto_docstring
|
74 |
+
def preprocess(
|
75 |
+
self, images: ImageInput, **kwargs: Unpack[RFastImageProcessorKwargs]
|
76 |
+
) -> BatchFeature:
|
77 |
+
if isinstance(images, (tuple, list)) and isinstance(images[0], (tuple, list)):
|
78 |
+
# if the first element is a list, we assume that all elements are lists
|
79 |
+
batch_num_images = [len(x) for x in images]
|
80 |
+
elif isinstance(images, (tuple, list)):
|
81 |
+
# treat this as a single-image case for backward compatibility
|
82 |
+
batch_num_images = [1] * len(images)
|
83 |
+
else:
|
84 |
+
batch_num_images = [1]
|
85 |
+
kwargs["batch_num_images"] = batch_num_images
|
86 |
+
return super().preprocess(images, **kwargs)
|
87 |
+
|
88 |
+
def _prepare_images_structure(
|
89 |
+
self,
|
90 |
+
images: ImageInput,
|
91 |
+
) -> ImageInput:
|
92 |
+
return make_flat_list_of_images(images)
|
93 |
+
|
94 |
+
def _resize_for_patching(
|
95 |
+
self,
|
96 |
+
image: "torch.Tensor",
|
97 |
+
target_resolution: tuple,
|
98 |
+
interpolation: "F.InterpolationMode",
|
99 |
+
input_data_format: ChannelDimension,
|
100 |
+
) -> "torch.Tensor":
|
101 |
+
|
102 |
+
new_height, new_width = get_patch_output_size(image, target_resolution, input_data_format)
|
103 |
+
|
104 |
+
# Resize the image
|
105 |
+
resized_image = F.resize(image, (new_height, new_width), interpolation=interpolation)
|
106 |
+
|
107 |
+
return resized_image
|
108 |
+
|
109 |
+
def _get_padding_size(self, original_resolution: tuple, target_resolution: tuple):
|
110 |
+
original_height, original_width = original_resolution
|
111 |
+
target_height, target_width = target_resolution
|
112 |
+
paste_x, r_x = divmod(target_width - original_width, 2)
|
113 |
+
paste_y, r_y = divmod(target_height - original_height, 2)
|
114 |
+
return [paste_x, paste_y, paste_x + r_x, paste_y + r_y]
|
115 |
+
|
116 |
+
def _pad_for_patching(
|
117 |
+
self, image: "torch.Tensor", target_resolution: tuple, input_data_format: ChannelDimension
|
118 |
+
) -> "torch.Tensor":
|
119 |
+
"""
|
120 |
+
Pad an image to a target resolution while maintaining aspect ratio.
|
121 |
+
"""
|
122 |
+
new_resolution = get_patch_output_size(image, target_resolution, input_data_format)
|
123 |
+
padding = self._get_padding_size(new_resolution, target_resolution)
|
124 |
+
|
125 |
+
padded_image = F.pad(image, padding=padding)
|
126 |
+
|
127 |
+
return padded_image
|
128 |
+
|
129 |
+
def _get_image_patches(
|
130 |
+
self,
|
131 |
+
image: "torch.Tensor",
|
132 |
+
grid_pinpoints,
|
133 |
+
size: tuple,
|
134 |
+
patch_size: int,
|
135 |
+
interpolation: "F.InterpolationMode",
|
136 |
+
) -> list["torch.Tensor"]:
|
137 |
+
"""
|
138 |
+
Process an image with variable resolutions by dividing it into patches.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
image ("torch.Tensor"):
|
142 |
+
The input image to be processed.
|
143 |
+
grid_pinpoints (List):
|
144 |
+
A string representation of a list of possible resolutions.
|
145 |
+
size (`tuple`):
|
146 |
+
Size to resize the original image to.
|
147 |
+
patch_size (`int`):
|
148 |
+
Size of the patches to divide the image into.
|
149 |
+
interpolation (`"InterpolationMode"`):
|
150 |
+
Resampling filter to use if resizing the image.
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
list["torch.Tensor"]: A list of NumPy arrays containing the processed image patches.
|
154 |
+
"""
|
155 |
+
if not isinstance(grid_pinpoints, list):
|
156 |
+
raise TypeError("grid_pinpoints must be a list of possible resolutions.")
|
157 |
+
|
158 |
+
possible_resolutions = grid_pinpoints
|
159 |
+
|
160 |
+
image_size = get_image_size(image, channel_dim=ChannelDimension.FIRST)
|
161 |
+
best_resolution = select_best_resolution(image_size, possible_resolutions)
|
162 |
+
resized_image = self._resize_for_patching(
|
163 |
+
image, best_resolution, interpolation=interpolation, input_data_format=ChannelDimension.FIRST
|
164 |
+
)
|
165 |
+
padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=ChannelDimension.FIRST)
|
166 |
+
patches = divide_to_patches(padded_image, patch_size=patch_size)
|
167 |
+
resized_original_image = F.resize(image, size=size, interpolation=interpolation)
|
168 |
+
|
169 |
+
image_patches = [resized_original_image] + patches
|
170 |
+
|
171 |
+
return image_patches
|
172 |
+
|
173 |
+
def _pad_for_batching(
|
174 |
+
self,
|
175 |
+
pixel_values: list["torch.Tensor"],
|
176 |
+
) -> list["torch.Tensor"]:
|
177 |
+
"""
|
178 |
+
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
pixel_values (`list[torch.Tensor]`):
|
182 |
+
An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
list[`torch.Tensor`]: The padded images.
|
186 |
+
"""
|
187 |
+
max_patch = max(len(x) for x in pixel_values)
|
188 |
+
pixel_values = [
|
189 |
+
torch.nn.functional.pad(image, pad=[0, 0, 0, 0, 0, 0, 0, max_patch - image.shape[0]])
|
190 |
+
for image in pixel_values
|
191 |
+
]
|
192 |
+
|
193 |
+
return pixel_values
|
194 |
+
|
195 |
+
def _preprocess(
|
196 |
+
self,
|
197 |
+
images: list["torch.Tensor"],
|
198 |
+
do_resize: bool,
|
199 |
+
size: SizeDict,
|
200 |
+
image_grid_pinpoints: list[list[int]],
|
201 |
+
interpolation: Optional["F.InterpolationMode"],
|
202 |
+
do_center_crop: bool,
|
203 |
+
crop_size: SizeDict,
|
204 |
+
do_rescale: bool,
|
205 |
+
rescale_factor: float,
|
206 |
+
do_normalize: bool,
|
207 |
+
image_mean: Optional[Union[float, list[float]]],
|
208 |
+
image_std: Optional[Union[float, list[float]]],
|
209 |
+
do_pad: bool,
|
210 |
+
batch_num_images: list[int],
|
211 |
+
return_tensors: Optional[Union[str, TensorType]],
|
212 |
+
) -> BatchFeature:
|
213 |
+
processed_images = []
|
214 |
+
image_sizes = []
|
215 |
+
|
216 |
+
# only single image patching is supported
|
217 |
+
need_patching = [n == 1 for n in batch_num_images for _ in range(n)]
|
218 |
+
|
219 |
+
# Determine the size tuple
|
220 |
+
if size and size.height and size.width:
|
221 |
+
size_tuple = (size.height, size.width)
|
222 |
+
else:
|
223 |
+
size_tuple = (size.shortest_edge, size.shortest_edge)
|
224 |
+
|
225 |
+
# Determine the patch size
|
226 |
+
if crop_size and crop_size.height:
|
227 |
+
patch_size = crop_size.height
|
228 |
+
elif size and size.height:
|
229 |
+
patch_size = size.height
|
230 |
+
else:
|
231 |
+
patch_size = size.shortest_edge
|
232 |
+
|
233 |
+
for i, image in enumerate(images):
|
234 |
+
if need_patching[i]:
|
235 |
+
image_patches = self._get_image_patches(
|
236 |
+
image,
|
237 |
+
image_grid_pinpoints,
|
238 |
+
size=size_tuple,
|
239 |
+
patch_size=patch_size,
|
240 |
+
interpolation=interpolation,
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
padded_image = self.pad_to_square(
|
244 |
+
images=image, background_color=tuple(int(x * 255) for x in self.image_mean)
|
245 |
+
)
|
246 |
+
image_patches = [padded_image]
|
247 |
+
|
248 |
+
# Group images by size for batched processing
|
249 |
+
processed_image_patches_grouped = {}
|
250 |
+
grouped_image_patches, grouped_image_patches_index = group_images_by_shape(image_patches)
|
251 |
+
for shape, stacked_image_patches in grouped_image_patches.items():
|
252 |
+
if do_resize:
|
253 |
+
stacked_image_patches = self.resize(
|
254 |
+
image=stacked_image_patches,
|
255 |
+
size=size,
|
256 |
+
interpolation=interpolation,
|
257 |
+
)
|
258 |
+
if do_center_crop:
|
259 |
+
stacked_image_patches = self.center_crop(stacked_image_patches, crop_size)
|
260 |
+
# Fused rescale and normalize
|
261 |
+
stacked_image_patches = self.rescale_and_normalize(
|
262 |
+
stacked_image_patches, do_rescale, rescale_factor, do_normalize, image_mean, image_std
|
263 |
+
)
|
264 |
+
processed_image_patches_grouped[shape] = stacked_image_patches
|
265 |
+
processed_image_patches = reorder_images(processed_image_patches_grouped, grouped_image_patches_index)
|
266 |
+
processed_image_patches = (
|
267 |
+
torch.stack(processed_image_patches, dim=0) if return_tensors else processed_image_patches
|
268 |
+
)
|
269 |
+
processed_images.append(processed_image_patches)
|
270 |
+
image_sizes.append(get_image_size(image, ChannelDimension.FIRST))
|
271 |
+
|
272 |
+
if do_pad:
|
273 |
+
processed_images = self._pad_for_batching(processed_images)
|
274 |
+
processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images
|
275 |
+
return BatchFeature(
|
276 |
+
data={"pixel_values": processed_images, "image_sizes": image_sizes, "batch_num_images": batch_num_images},
|
277 |
+
tensor_type=return_tensors,
|
278 |
+
)
|
279 |
+
|
280 |
+
# Copied from transformers.models.llava.image_processing_llava_fast.LlavaImageProcessorFast.pad_to_square
|
281 |
+
def pad_to_square(
|
282 |
+
self,
|
283 |
+
images: "torch.Tensor",
|
284 |
+
background_color: Union[int, tuple[int, int, int]] = 0,
|
285 |
+
) -> "torch.Tensor":
|
286 |
+
"""
|
287 |
+
Pads an image to a square based on the longest edge.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
images (`np.ndarray`):
|
291 |
+
The images to pad.
|
292 |
+
background_color (`int` or `tuple[int, int, int]`, *optional*, defaults to 0):
|
293 |
+
The color to use for the padding. Can be an integer for single channel or a
|
294 |
+
tuple of integers representing for multi-channel images. If passed as integer
|
295 |
+
in mutli-channel mode, it will default to `0` in subsequent channels.
|
296 |
+
Returns:
|
297 |
+
`torch.Tensor`: The padded images.
|
298 |
+
"""
|
299 |
+
height, width = get_image_size(images, ChannelDimension.FIRST)
|
300 |
+
|
301 |
+
if height == width:
|
302 |
+
return images
|
303 |
+
|
304 |
+
num_channels = images.shape[1] if len(images.shape) == 4 else images.shape[0]
|
305 |
+
if isinstance(background_color, int):
|
306 |
+
background_color = [background_color] + [0] * (num_channels - 1)
|
307 |
+
elif len(background_color) != num_channels:
|
308 |
+
raise ValueError(
|
309 |
+
f"background_color must have no more than {num_channels} elements to match the number of channels"
|
310 |
+
)
|
311 |
+
|
312 |
+
max_dim = max(height, width)
|
313 |
+
paste_x_left = (max_dim - width) // 2
|
314 |
+
paste_y_left = (max_dim - height) // 2
|
315 |
+
paste_x_right = max_dim - width - paste_x_left
|
316 |
+
paste_y_right = max_dim - height - paste_y_left
|
317 |
+
padded_images = F.pad(
|
318 |
+
images, padding=[paste_x_left, paste_y_left, paste_x_right, paste_y_right], fill=background_color
|
319 |
+
)
|
320 |
+
|
321 |
+
return padded_images
|
322 |
+
|
323 |
+
|
324 |
+
__all__ = ["RImageProcessorFast"]
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cbe4838c6bf13407ca264c3f05a7b5773a54e190d819612c9c9082040dcec89
|
3 |
+
size 4588680176
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6e36a8076b61866ef7fa29d5bf7418fc81705eaa59ef18982bdba846a96bae1
|
3 |
+
size 4984489744
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdb79aaec58bb87ba821cc6fedfe6affb9158be17303ad6d1254d2535f6fe82f
|
3 |
+
size 64968216
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,834 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 9638024768
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00003.safetensors",
|
7 |
+
"model.image_newline": "model-00002-of-00003.safetensors",
|
8 |
+
"model.language_model.embed_tokens.weight": "model-00002-of-00003.safetensors",
|
9 |
+
"model.language_model.layers.0.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
10 |
+
"model.language_model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.language_model.layers.0.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
12 |
+
"model.language_model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.language_model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.language_model.layers.0.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.language_model.layers.0.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
16 |
+
"model.language_model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.language_model.layers.0.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.language_model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.language_model.layers.0.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
20 |
+
"model.language_model.layers.1.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
21 |
+
"model.language_model.layers.1.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
22 |
+
"model.language_model.layers.1.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
23 |
+
"model.language_model.layers.1.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
24 |
+
"model.language_model.layers.1.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
25 |
+
"model.language_model.layers.1.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.language_model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
27 |
+
"model.language_model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"model.language_model.layers.1.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
29 |
+
"model.language_model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.language_model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"model.language_model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.language_model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
33 |
+
"model.language_model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
34 |
+
"model.language_model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
35 |
+
"model.language_model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.language_model.layers.10.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
37 |
+
"model.language_model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.language_model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
39 |
+
"model.language_model.layers.10.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
40 |
+
"model.language_model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
41 |
+
"model.language_model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
42 |
+
"model.language_model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.language_model.layers.11.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
44 |
+
"model.language_model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
45 |
+
"model.language_model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.language_model.layers.11.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
47 |
+
"model.language_model.layers.11.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
48 |
+
"model.language_model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
49 |
+
"model.language_model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
50 |
+
"model.language_model.layers.11.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.language_model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
52 |
+
"model.language_model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
53 |
+
"model.language_model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.language_model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.language_model.layers.12.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
56 |
+
"model.language_model.layers.12.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
57 |
+
"model.language_model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.language_model.layers.12.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
59 |
+
"model.language_model.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
60 |
+
"model.language_model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.language_model.layers.12.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
62 |
+
"model.language_model.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
63 |
+
"model.language_model.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
64 |
+
"model.language_model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.language_model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.language_model.layers.13.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
67 |
+
"model.language_model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.language_model.layers.13.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
69 |
+
"model.language_model.layers.13.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
70 |
+
"model.language_model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.language_model.layers.13.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
72 |
+
"model.language_model.layers.13.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
73 |
+
"model.language_model.layers.13.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
74 |
+
"model.language_model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.language_model.layers.14.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
76 |
+
"model.language_model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.language_model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.language_model.layers.14.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
79 |
+
"model.language_model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.language_model.layers.14.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
81 |
+
"model.language_model.layers.14.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
82 |
+
"model.language_model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.language_model.layers.14.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
84 |
+
"model.language_model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.language_model.layers.14.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
86 |
+
"model.language_model.layers.15.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
87 |
+
"model.language_model.layers.15.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
88 |
+
"model.language_model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.language_model.layers.15.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
90 |
+
"model.language_model.layers.15.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
91 |
+
"model.language_model.layers.15.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.language_model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.language_model.layers.15.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
94 |
+
"model.language_model.layers.15.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.language_model.layers.15.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
96 |
+
"model.language_model.layers.15.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
97 |
+
"model.language_model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.language_model.layers.16.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
99 |
+
"model.language_model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.language_model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.language_model.layers.16.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
102 |
+
"model.language_model.layers.16.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.language_model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.language_model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.language_model.layers.16.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
106 |
+
"model.language_model.layers.16.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
107 |
+
"model.language_model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.language_model.layers.17.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
109 |
+
"model.language_model.layers.17.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
110 |
+
"model.language_model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.language_model.layers.17.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
112 |
+
"model.language_model.layers.17.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
113 |
+
"model.language_model.layers.17.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.language_model.layers.17.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
115 |
+
"model.language_model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.language_model.layers.17.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.language_model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
118 |
+
"model.language_model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
119 |
+
"model.language_model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
120 |
+
"model.language_model.layers.18.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.language_model.layers.18.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.language_model.layers.18.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.language_model.layers.18.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.language_model.layers.18.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.language_model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.language_model.layers.18.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
127 |
+
"model.language_model.layers.18.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
128 |
+
"model.language_model.layers.18.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
129 |
+
"model.language_model.layers.18.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
130 |
+
"model.language_model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.language_model.layers.19.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
132 |
+
"model.language_model.layers.19.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
133 |
+
"model.language_model.layers.19.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
134 |
+
"model.language_model.layers.19.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
135 |
+
"model.language_model.layers.19.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.language_model.layers.19.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
137 |
+
"model.language_model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.language_model.layers.19.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
139 |
+
"model.language_model.layers.19.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
140 |
+
"model.language_model.layers.19.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
141 |
+
"model.language_model.layers.2.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.language_model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
143 |
+
"model.language_model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
144 |
+
"model.language_model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
145 |
+
"model.language_model.layers.2.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
146 |
+
"model.language_model.layers.2.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
147 |
+
"model.language_model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
148 |
+
"model.language_model.layers.2.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.language_model.layers.2.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.language_model.layers.2.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.language_model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
152 |
+
"model.language_model.layers.20.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
153 |
+
"model.language_model.layers.20.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
154 |
+
"model.language_model.layers.20.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
155 |
+
"model.language_model.layers.20.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
156 |
+
"model.language_model.layers.20.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
157 |
+
"model.language_model.layers.20.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
158 |
+
"model.language_model.layers.20.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
159 |
+
"model.language_model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
160 |
+
"model.language_model.layers.20.self_attn.q_norm.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.language_model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
162 |
+
"model.language_model.layers.20.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
163 |
+
"model.language_model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
164 |
+
"model.language_model.layers.21.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
165 |
+
"model.language_model.layers.21.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
166 |
+
"model.language_model.layers.21.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
167 |
+
"model.language_model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
168 |
+
"model.language_model.layers.21.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
169 |
+
"model.language_model.layers.21.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
170 |
+
"model.language_model.layers.21.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
171 |
+
"model.language_model.layers.21.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
172 |
+
"model.language_model.layers.21.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
173 |
+
"model.language_model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
174 |
+
"model.language_model.layers.22.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
175 |
+
"model.language_model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
176 |
+
"model.language_model.layers.22.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
177 |
+
"model.language_model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
178 |
+
"model.language_model.layers.22.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
179 |
+
"model.language_model.layers.22.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
180 |
+
"model.language_model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
181 |
+
"model.language_model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
182 |
+
"model.language_model.layers.22.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
183 |
+
"model.language_model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
184 |
+
"model.language_model.layers.22.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
185 |
+
"model.language_model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
186 |
+
"model.language_model.layers.23.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
187 |
+
"model.language_model.layers.23.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
188 |
+
"model.language_model.layers.23.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
189 |
+
"model.language_model.layers.23.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
190 |
+
"model.language_model.layers.23.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
191 |
+
"model.language_model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
192 |
+
"model.language_model.layers.23.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
193 |
+
"model.language_model.layers.23.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
194 |
+
"model.language_model.layers.23.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
195 |
+
"model.language_model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
196 |
+
"model.language_model.layers.24.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
197 |
+
"model.language_model.layers.24.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
198 |
+
"model.language_model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
199 |
+
"model.language_model.layers.24.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
200 |
+
"model.language_model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
201 |
+
"model.language_model.layers.24.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
202 |
+
"model.language_model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
203 |
+
"model.language_model.layers.24.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
204 |
+
"model.language_model.layers.24.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
205 |
+
"model.language_model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
206 |
+
"model.language_model.layers.24.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
207 |
+
"model.language_model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
208 |
+
"model.language_model.layers.25.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
209 |
+
"model.language_model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.language_model.layers.25.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
211 |
+
"model.language_model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
212 |
+
"model.language_model.layers.25.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
213 |
+
"model.language_model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
214 |
+
"model.language_model.layers.25.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
215 |
+
"model.language_model.layers.25.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.language_model.layers.25.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.language_model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
218 |
+
"model.language_model.layers.26.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
219 |
+
"model.language_model.layers.26.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.language_model.layers.26.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.language_model.layers.26.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
222 |
+
"model.language_model.layers.26.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.language_model.layers.26.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.language_model.layers.26.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
225 |
+
"model.language_model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
226 |
+
"model.language_model.layers.26.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
227 |
+
"model.language_model.layers.26.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
228 |
+
"model.language_model.layers.26.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
229 |
+
"model.language_model.layers.27.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
230 |
+
"model.language_model.layers.27.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
231 |
+
"model.language_model.layers.27.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
232 |
+
"model.language_model.layers.27.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
233 |
+
"model.language_model.layers.27.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
234 |
+
"model.language_model.layers.27.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
235 |
+
"model.language_model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.language_model.layers.27.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
237 |
+
"model.language_model.layers.27.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
238 |
+
"model.language_model.layers.27.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
239 |
+
"model.language_model.layers.27.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
240 |
+
"model.language_model.layers.28.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
241 |
+
"model.language_model.layers.28.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
242 |
+
"model.language_model.layers.28.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
243 |
+
"model.language_model.layers.28.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.language_model.layers.28.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
245 |
+
"model.language_model.layers.28.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.language_model.layers.28.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.language_model.layers.28.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.language_model.layers.28.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.language_model.layers.28.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
250 |
+
"model.language_model.layers.28.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.language_model.layers.29.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.language_model.layers.29.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.language_model.layers.29.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.language_model.layers.29.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.language_model.layers.29.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
256 |
+
"model.language_model.layers.29.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.language_model.layers.29.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.language_model.layers.29.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
259 |
+
"model.language_model.layers.29.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.language_model.layers.29.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.language_model.layers.29.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.language_model.layers.3.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
263 |
+
"model.language_model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.language_model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.language_model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.language_model.layers.3.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
267 |
+
"model.language_model.layers.3.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
268 |
+
"model.language_model.layers.3.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
269 |
+
"model.language_model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.language_model.layers.3.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.language_model.layers.3.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
272 |
+
"model.language_model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.language_model.layers.30.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
274 |
+
"model.language_model.layers.30.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.language_model.layers.30.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.language_model.layers.30.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.language_model.layers.30.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
278 |
+
"model.language_model.layers.30.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.language_model.layers.30.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
280 |
+
"model.language_model.layers.30.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
281 |
+
"model.language_model.layers.30.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.language_model.layers.30.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.language_model.layers.30.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
284 |
+
"model.language_model.layers.31.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.language_model.layers.31.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
286 |
+
"model.language_model.layers.31.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.language_model.layers.31.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
288 |
+
"model.language_model.layers.31.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.language_model.layers.31.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.language_model.layers.31.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
291 |
+
"model.language_model.layers.31.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
292 |
+
"model.language_model.layers.31.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.language_model.layers.31.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
294 |
+
"model.language_model.layers.31.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.language_model.layers.32.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
296 |
+
"model.language_model.layers.32.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
297 |
+
"model.language_model.layers.32.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
298 |
+
"model.language_model.layers.32.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
299 |
+
"model.language_model.layers.32.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
300 |
+
"model.language_model.layers.32.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
301 |
+
"model.language_model.layers.32.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
302 |
+
"model.language_model.layers.32.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
303 |
+
"model.language_model.layers.32.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
304 |
+
"model.language_model.layers.32.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
305 |
+
"model.language_model.layers.32.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
306 |
+
"model.language_model.layers.33.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
307 |
+
"model.language_model.layers.33.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
308 |
+
"model.language_model.layers.33.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
309 |
+
"model.language_model.layers.33.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
310 |
+
"model.language_model.layers.33.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
311 |
+
"model.language_model.layers.33.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
312 |
+
"model.language_model.layers.33.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
313 |
+
"model.language_model.layers.33.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
314 |
+
"model.language_model.layers.33.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
315 |
+
"model.language_model.layers.33.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
316 |
+
"model.language_model.layers.33.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
317 |
+
"model.language_model.layers.34.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
318 |
+
"model.language_model.layers.34.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
319 |
+
"model.language_model.layers.34.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
320 |
+
"model.language_model.layers.34.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
321 |
+
"model.language_model.layers.34.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
322 |
+
"model.language_model.layers.34.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
323 |
+
"model.language_model.layers.34.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
324 |
+
"model.language_model.layers.34.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
325 |
+
"model.language_model.layers.34.self_attn.q_norm.weight": "model-00003-of-00003.safetensors",
|
326 |
+
"model.language_model.layers.34.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
327 |
+
"model.language_model.layers.34.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
328 |
+
"model.language_model.layers.35.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
329 |
+
"model.language_model.layers.35.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
330 |
+
"model.language_model.layers.35.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
331 |
+
"model.language_model.layers.35.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
332 |
+
"model.language_model.layers.35.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
333 |
+
"model.language_model.layers.35.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
334 |
+
"model.language_model.layers.35.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
335 |
+
"model.language_model.layers.35.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
336 |
+
"model.language_model.layers.35.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
337 |
+
"model.language_model.layers.35.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
338 |
+
"model.language_model.layers.35.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
339 |
+
"model.language_model.layers.4.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
340 |
+
"model.language_model.layers.4.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
341 |
+
"model.language_model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
342 |
+
"model.language_model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
343 |
+
"model.language_model.layers.4.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
344 |
+
"model.language_model.layers.4.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
345 |
+
"model.language_model.layers.4.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
346 |
+
"model.language_model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
347 |
+
"model.language_model.layers.4.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
348 |
+
"model.language_model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
349 |
+
"model.language_model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
350 |
+
"model.language_model.layers.5.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
351 |
+
"model.language_model.layers.5.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
352 |
+
"model.language_model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
353 |
+
"model.language_model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
354 |
+
"model.language_model.layers.5.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
355 |
+
"model.language_model.layers.5.self_attn.k_norm.weight": "model-00003-of-00003.safetensors",
|
356 |
+
"model.language_model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
357 |
+
"model.language_model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
358 |
+
"model.language_model.layers.5.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
359 |
+
"model.language_model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
360 |
+
"model.language_model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
361 |
+
"model.language_model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
362 |
+
"model.language_model.layers.6.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
363 |
+
"model.language_model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
364 |
+
"model.language_model.layers.6.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
365 |
+
"model.language_model.layers.6.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
366 |
+
"model.language_model.layers.6.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
367 |
+
"model.language_model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
368 |
+
"model.language_model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
369 |
+
"model.language_model.layers.6.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
370 |
+
"model.language_model.layers.6.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
371 |
+
"model.language_model.layers.6.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
372 |
+
"model.language_model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
373 |
+
"model.language_model.layers.7.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
374 |
+
"model.language_model.layers.7.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
375 |
+
"model.language_model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
376 |
+
"model.language_model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
377 |
+
"model.language_model.layers.7.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
378 |
+
"model.language_model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
379 |
+
"model.language_model.layers.7.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
380 |
+
"model.language_model.layers.7.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
381 |
+
"model.language_model.layers.7.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
382 |
+
"model.language_model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
383 |
+
"model.language_model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
384 |
+
"model.language_model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
385 |
+
"model.language_model.layers.8.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
386 |
+
"model.language_model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
387 |
+
"model.language_model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
388 |
+
"model.language_model.layers.8.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
389 |
+
"model.language_model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
390 |
+
"model.language_model.layers.8.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
391 |
+
"model.language_model.layers.8.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
392 |
+
"model.language_model.layers.8.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
393 |
+
"model.language_model.layers.8.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
394 |
+
"model.language_model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
395 |
+
"model.language_model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
396 |
+
"model.language_model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
397 |
+
"model.language_model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
398 |
+
"model.language_model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
399 |
+
"model.language_model.layers.9.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
400 |
+
"model.language_model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
401 |
+
"model.language_model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
402 |
+
"model.language_model.layers.9.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
403 |
+
"model.language_model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
404 |
+
"model.language_model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
405 |
+
"model.language_model.norm.weight": "model-00002-of-00003.safetensors",
|
406 |
+
"model.multi_modal_projector.linear_1.bias": "model-00001-of-00003.safetensors",
|
407 |
+
"model.multi_modal_projector.linear_1.weight": "model-00002-of-00003.safetensors",
|
408 |
+
"model.multi_modal_projector.linear_2.bias": "model-00002-of-00003.safetensors",
|
409 |
+
"model.multi_modal_projector.linear_2.weight": "model-00002-of-00003.safetensors",
|
410 |
+
"model.multi_modal_projector.pre_norm.bias": "model-00001-of-00003.safetensors",
|
411 |
+
"model.multi_modal_projector.pre_norm.weight": "model-00001-of-00003.safetensors",
|
412 |
+
"model.vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00003.safetensors",
|
413 |
+
"model.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00003.safetensors",
|
414 |
+
"model.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00002-of-00003.safetensors",
|
415 |
+
"model.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
416 |
+
"model.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
417 |
+
"model.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
418 |
+
"model.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00002-of-00003.safetensors",
|
419 |
+
"model.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
420 |
+
"model.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
421 |
+
"model.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
422 |
+
"model.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
423 |
+
"model.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
424 |
+
"model.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
425 |
+
"model.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
426 |
+
"model.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
427 |
+
"model.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
428 |
+
"model.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
429 |
+
"model.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
430 |
+
"model.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
431 |
+
"model.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
432 |
+
"model.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
433 |
+
"model.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
434 |
+
"model.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
435 |
+
"model.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
436 |
+
"model.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
437 |
+
"model.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00002-of-00003.safetensors",
|
438 |
+
"model.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
439 |
+
"model.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
440 |
+
"model.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
441 |
+
"model.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
442 |
+
"model.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
443 |
+
"model.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
444 |
+
"model.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
445 |
+
"model.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
446 |
+
"model.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
447 |
+
"model.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00002-of-00003.safetensors",
|
448 |
+
"model.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00002-of-00003.safetensors",
|
449 |
+
"model.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00002-of-00003.safetensors",
|
450 |
+
"model.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
451 |
+
"model.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00002-of-00003.safetensors",
|
452 |
+
"model.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
453 |
+
"model.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
454 |
+
"model.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
455 |
+
"model.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
456 |
+
"model.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
457 |
+
"model.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
458 |
+
"model.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
459 |
+
"model.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
460 |
+
"model.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
461 |
+
"model.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
462 |
+
"model.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
463 |
+
"model.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
464 |
+
"model.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
465 |
+
"model.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
466 |
+
"model.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00002-of-00003.safetensors",
|
467 |
+
"model.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
468 |
+
"model.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
469 |
+
"model.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
470 |
+
"model.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
471 |
+
"model.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
472 |
+
"model.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
473 |
+
"model.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
474 |
+
"model.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
475 |
+
"model.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
476 |
+
"model.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
477 |
+
"model.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
478 |
+
"model.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
479 |
+
"model.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00002-of-00003.safetensors",
|
480 |
+
"model.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
481 |
+
"model.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
482 |
+
"model.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00002-of-00003.safetensors",
|
483 |
+
"model.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00002-of-00003.safetensors",
|
484 |
+
"model.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
485 |
+
"model.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
486 |
+
"model.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
487 |
+
"model.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
488 |
+
"model.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
489 |
+
"model.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
490 |
+
"model.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
491 |
+
"model.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
492 |
+
"model.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
493 |
+
"model.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
494 |
+
"model.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
495 |
+
"model.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
496 |
+
"model.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
497 |
+
"model.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
498 |
+
"model.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
499 |
+
"model.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
500 |
+
"model.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
501 |
+
"model.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00002-of-00003.safetensors",
|
502 |
+
"model.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
503 |
+
"model.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
504 |
+
"model.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
505 |
+
"model.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
506 |
+
"model.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
507 |
+
"model.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
508 |
+
"model.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
509 |
+
"model.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
510 |
+
"model.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
511 |
+
"model.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
512 |
+
"model.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
513 |
+
"model.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00002-of-00003.safetensors",
|
514 |
+
"model.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
515 |
+
"model.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
516 |
+
"model.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
517 |
+
"model.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00002-of-00003.safetensors",
|
518 |
+
"model.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
519 |
+
"model.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
520 |
+
"model.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
521 |
+
"model.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
522 |
+
"model.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
523 |
+
"model.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
524 |
+
"model.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
525 |
+
"model.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
526 |
+
"model.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
527 |
+
"model.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00002-of-00003.safetensors",
|
528 |
+
"model.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
529 |
+
"model.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
530 |
+
"model.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
531 |
+
"model.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
532 |
+
"model.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
533 |
+
"model.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
534 |
+
"model.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
535 |
+
"model.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
536 |
+
"model.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
537 |
+
"model.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
538 |
+
"model.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
539 |
+
"model.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
540 |
+
"model.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
541 |
+
"model.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
542 |
+
"model.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
543 |
+
"model.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
544 |
+
"model.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00002-of-00003.safetensors",
|
545 |
+
"model.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
546 |
+
"model.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
547 |
+
"model.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00002-of-00003.safetensors",
|
548 |
+
"model.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
549 |
+
"model.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00002-of-00003.safetensors",
|
550 |
+
"model.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
551 |
+
"model.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
552 |
+
"model.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
553 |
+
"model.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
554 |
+
"model.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
555 |
+
"model.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
556 |
+
"model.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
557 |
+
"model.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
558 |
+
"model.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
559 |
+
"model.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
560 |
+
"model.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
561 |
+
"model.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00002-of-00003.safetensors",
|
562 |
+
"model.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00002-of-00003.safetensors",
|
563 |
+
"model.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00002-of-00003.safetensors",
|
564 |
+
"model.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
565 |
+
"model.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00002-of-00003.safetensors",
|
566 |
+
"model.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
567 |
+
"model.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
568 |
+
"model.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
569 |
+
"model.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
570 |
+
"model.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
571 |
+
"model.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
572 |
+
"model.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
573 |
+
"model.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
574 |
+
"model.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
575 |
+
"model.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00002-of-00003.safetensors",
|
576 |
+
"model.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
577 |
+
"model.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
578 |
+
"model.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
579 |
+
"model.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
580 |
+
"model.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
581 |
+
"model.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
582 |
+
"model.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
583 |
+
"model.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
584 |
+
"model.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
585 |
+
"model.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
586 |
+
"model.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
587 |
+
"model.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
588 |
+
"model.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
589 |
+
"model.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
590 |
+
"model.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
591 |
+
"model.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00002-of-00003.safetensors",
|
592 |
+
"model.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00002-of-00003.safetensors",
|
593 |
+
"model.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00002-of-00003.safetensors",
|
594 |
+
"model.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
595 |
+
"model.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
596 |
+
"model.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
597 |
+
"model.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00002-of-00003.safetensors",
|
598 |
+
"model.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
599 |
+
"model.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
600 |
+
"model.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
601 |
+
"model.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
602 |
+
"model.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
603 |
+
"model.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
604 |
+
"model.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
605 |
+
"model.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
606 |
+
"model.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
607 |
+
"model.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00002-of-00003.safetensors",
|
608 |
+
"model.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00002-of-00003.safetensors",
|
609 |
+
"model.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00002-of-00003.safetensors",
|
610 |
+
"model.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00002-of-00003.safetensors",
|
611 |
+
"model.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
612 |
+
"model.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
613 |
+
"model.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00002-of-00003.safetensors",
|
614 |
+
"model.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
615 |
+
"model.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
616 |
+
"model.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
617 |
+
"model.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
618 |
+
"model.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
619 |
+
"model.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
620 |
+
"model.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
621 |
+
"model.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
622 |
+
"model.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
623 |
+
"model.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
624 |
+
"model.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
625 |
+
"model.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
626 |
+
"model.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
627 |
+
"model.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
628 |
+
"model.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
629 |
+
"model.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
630 |
+
"model.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
631 |
+
"model.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
632 |
+
"model.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
633 |
+
"model.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
634 |
+
"model.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
635 |
+
"model.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
636 |
+
"model.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
637 |
+
"model.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
638 |
+
"model.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
639 |
+
"model.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00002-of-00003.safetensors",
|
640 |
+
"model.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00002-of-00003.safetensors",
|
641 |
+
"model.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00002-of-00003.safetensors",
|
642 |
+
"model.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
643 |
+
"model.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
644 |
+
"model.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
645 |
+
"model.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
646 |
+
"model.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
647 |
+
"model.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
648 |
+
"model.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
649 |
+
"model.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
650 |
+
"model.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
651 |
+
"model.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
652 |
+
"model.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
653 |
+
"model.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
654 |
+
"model.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
655 |
+
"model.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
656 |
+
"model.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00002-of-00003.safetensors",
|
657 |
+
"model.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00002-of-00003.safetensors",
|
658 |
+
"model.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
659 |
+
"model.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
660 |
+
"model.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
661 |
+
"model.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
662 |
+
"model.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
663 |
+
"model.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
664 |
+
"model.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
665 |
+
"model.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
666 |
+
"model.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
667 |
+
"model.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
668 |
+
"model.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
669 |
+
"model.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
670 |
+
"model.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
671 |
+
"model.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
672 |
+
"model.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
673 |
+
"model.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
674 |
+
"model.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00002-of-00003.safetensors",
|
675 |
+
"model.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00002-of-00003.safetensors",
|
676 |
+
"model.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
677 |
+
"model.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
678 |
+
"model.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
679 |
+
"model.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
680 |
+
"model.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
681 |
+
"model.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
682 |
+
"model.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
683 |
+
"model.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
684 |
+
"model.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
685 |
+
"model.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
686 |
+
"model.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
687 |
+
"model.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00002-of-00003.safetensors",
|
688 |
+
"model.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00002-of-00003.safetensors",
|
689 |
+
"model.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00002-of-00003.safetensors",
|
690 |
+
"model.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00002-of-00003.safetensors",
|
691 |
+
"model.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
692 |
+
"model.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
693 |
+
"model.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00002-of-00003.safetensors",
|
694 |
+
"model.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
695 |
+
"model.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
696 |
+
"model.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
697 |
+
"model.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
698 |
+
"model.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
699 |
+
"model.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
700 |
+
"model.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
701 |
+
"model.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
702 |
+
"model.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
703 |
+
"model.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
704 |
+
"model.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
705 |
+
"model.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
706 |
+
"model.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
707 |
+
"model.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
708 |
+
"model.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
709 |
+
"model.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
710 |
+
"model.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
711 |
+
"model.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
712 |
+
"model.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
713 |
+
"model.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
714 |
+
"model.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
715 |
+
"model.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
716 |
+
"model.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
717 |
+
"model.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
718 |
+
"model.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
719 |
+
"model.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
720 |
+
"model.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00002-of-00003.safetensors",
|
721 |
+
"model.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
722 |
+
"model.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
723 |
+
"model.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00002-of-00003.safetensors",
|
724 |
+
"model.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
725 |
+
"model.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
726 |
+
"model.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
727 |
+
"model.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
728 |
+
"model.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
729 |
+
"model.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
730 |
+
"model.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
731 |
+
"model.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
732 |
+
"model.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
733 |
+
"model.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
734 |
+
"model.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
735 |
+
"model.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00002-of-00003.safetensors",
|
736 |
+
"model.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
737 |
+
"model.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00002-of-00003.safetensors",
|
738 |
+
"model.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
739 |
+
"model.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
740 |
+
"model.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
741 |
+
"model.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
742 |
+
"model.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
743 |
+
"model.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
744 |
+
"model.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
745 |
+
"model.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
746 |
+
"model.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
747 |
+
"model.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
748 |
+
"model.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
749 |
+
"model.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
750 |
+
"model.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
751 |
+
"model.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
752 |
+
"model.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
753 |
+
"model.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
754 |
+
"model.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
755 |
+
"model.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
756 |
+
"model.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
757 |
+
"model.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
758 |
+
"model.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
759 |
+
"model.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
760 |
+
"model.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
761 |
+
"model.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
|
762 |
+
"model.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
763 |
+
"model.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
764 |
+
"model.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
765 |
+
"model.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
766 |
+
"model.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
767 |
+
"model.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00002-of-00003.safetensors",
|
768 |
+
"model.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
769 |
+
"model.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00002-of-00003.safetensors",
|
770 |
+
"model.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
771 |
+
"model.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
772 |
+
"model.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
773 |
+
"model.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
774 |
+
"model.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
775 |
+
"model.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
776 |
+
"model.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
777 |
+
"model.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
778 |
+
"model.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
779 |
+
"model.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
780 |
+
"model.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
781 |
+
"model.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
782 |
+
"model.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
783 |
+
"model.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
784 |
+
"model.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00002-of-00003.safetensors",
|
785 |
+
"model.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00002-of-00003.safetensors",
|
786 |
+
"model.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00002-of-00003.safetensors",
|
787 |
+
"model.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00002-of-00003.safetensors",
|
788 |
+
"model.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
789 |
+
"model.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00002-of-00003.safetensors",
|
790 |
+
"model.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
791 |
+
"model.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
792 |
+
"model.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
793 |
+
"model.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
794 |
+
"model.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
795 |
+
"model.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
796 |
+
"model.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
797 |
+
"model.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
798 |
+
"model.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
799 |
+
"model.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
800 |
+
"model.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
801 |
+
"model.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
802 |
+
"model.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
803 |
+
"model.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
804 |
+
"model.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
805 |
+
"model.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
806 |
+
"model.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
807 |
+
"model.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
808 |
+
"model.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
809 |
+
"model.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
810 |
+
"model.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
811 |
+
"model.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
812 |
+
"model.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
813 |
+
"model.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
814 |
+
"model.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
815 |
+
"model.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
816 |
+
"model.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
817 |
+
"model.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
818 |
+
"model.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
819 |
+
"model.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
820 |
+
"model.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
821 |
+
"model.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00002-of-00003.safetensors",
|
822 |
+
"model.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
823 |
+
"model.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
824 |
+
"model.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
825 |
+
"model.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
826 |
+
"model.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
827 |
+
"model.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
828 |
+
"model.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
829 |
+
"model.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
830 |
+
"model.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
831 |
+
"model.vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00003.safetensors",
|
832 |
+
"model.vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00003.safetensors"
|
833 |
+
}
|
834 |
+
}
|
modeling_r.py
ADDED
@@ -0,0 +1,770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
2 |
+
# you may not use this file except in compliance with the License.
|
3 |
+
# You may obtain a copy of the License at
|
4 |
+
#
|
5 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6 |
+
#
|
7 |
+
# Unless required by applicable law or agreed to in writing, software
|
8 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
9 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
10 |
+
# See the License for the specific language governing permissions and
|
11 |
+
# limitations under the License.
|
12 |
+
|
13 |
+
import math
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Optional, Union
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from transformers.activations import GELUActivation
|
22 |
+
|
23 |
+
from transformers.generation import GenerationMixin
|
24 |
+
from transformers.image_processing_utils import select_best_resolution
|
25 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
26 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
27 |
+
from transformers.modeling_utils import PreTrainedModel
|
28 |
+
from transformers.models.auto import AutoModel
|
29 |
+
from transformers.processing_utils import Unpack
|
30 |
+
from transformers.utils import (
|
31 |
+
can_return_tuple,
|
32 |
+
is_torchdynamo_compiling,
|
33 |
+
logging,
|
34 |
+
)
|
35 |
+
from .configuration_r import RConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
@dataclass
|
42 |
+
class RModelOutputWithPast(BaseModelOutputWithPast):
|
43 |
+
|
44 |
+
|
45 |
+
image_hidden_states: Optional[torch.FloatTensor] = None
|
46 |
+
|
47 |
+
video_hidden_states: Optional[torch.FloatTensor] = None
|
48 |
+
|
49 |
+
|
50 |
+
@dataclass
|
51 |
+
class RCausalLMOutputWithPast(ModelOutput):
|
52 |
+
|
53 |
+
loss: Optional[torch.FloatTensor] = None
|
54 |
+
logits: Optional[torch.FloatTensor] = None
|
55 |
+
past_key_values: Optional[list[torch.FloatTensor]] = None
|
56 |
+
hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
57 |
+
attentions: Optional[tuple[torch.FloatTensor]] = None
|
58 |
+
image_hidden_states: Optional[torch.FloatTensor] = None
|
59 |
+
|
60 |
+
video_hidden_states: Optional[torch.FloatTensor] = None
|
61 |
+
|
62 |
+
|
63 |
+
class RPooler(nn.Module):
|
64 |
+
def __init__(self, config):
|
65 |
+
super().__init__()
|
66 |
+
|
67 |
+
mode = config.spatial_pool_mode
|
68 |
+
stride = config.spatial_pool_stride
|
69 |
+
out_channels = getattr(config, "spatial_pool_out_channels", config.vision_config.hidden_size)
|
70 |
+
self.image_size = (config.vision_config.image_size // config.vision_config.patch_size) ** 2
|
71 |
+
|
72 |
+
if mode == "average":
|
73 |
+
self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride)
|
74 |
+
elif mode == "max":
|
75 |
+
self.pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
|
76 |
+
elif mode == "conv":
|
77 |
+
self.pool = nn.Conv2d(
|
78 |
+
in_channels=config.vision_config.hidden_size,
|
79 |
+
out_channels=out_channels,
|
80 |
+
kernel_size=stride,
|
81 |
+
stride=stride,
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
raise ValueError(f"Unknown pooling mode: {mode}. Has to be one of [`average`, `max`, `conv`]")
|
85 |
+
|
86 |
+
def forward(self, image_features):
|
87 |
+
ori_width = int(math.sqrt(image_features.shape[1] * self.image_size // self.image_size))
|
88 |
+
ori_height = int(ori_width * self.image_size // self.image_size)
|
89 |
+
|
90 |
+
batch_size, _, dim = image_features.shape
|
91 |
+
image_features_spatial = image_features.view(batch_size, ori_height, ori_height, dim).permute(0, 3, 1, 2)
|
92 |
+
image_features_spatial_pool = self.pool(image_features_spatial)
|
93 |
+
|
94 |
+
return image_features_spatial_pool.flatten(2).transpose(1, 2).contiguous()
|
95 |
+
|
96 |
+
|
97 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
98 |
+
if not isinstance(grid_pinpoints, list):
|
99 |
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
100 |
+
|
101 |
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
102 |
+
if not isinstance(image_size, (list, tuple)):
|
103 |
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
104 |
+
raise TypeError(
|
105 |
+
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
|
106 |
+
)
|
107 |
+
image_size = image_size.tolist()
|
108 |
+
|
109 |
+
height, width = select_best_resolution(image_size, grid_pinpoints)
|
110 |
+
return height // patch_size, width // patch_size
|
111 |
+
|
112 |
+
|
113 |
+
def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
|
114 |
+
if not isinstance(grid_pinpoints, list):
|
115 |
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
116 |
+
|
117 |
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
118 |
+
if not isinstance(image_size, (list, tuple)):
|
119 |
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
120 |
+
raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
|
121 |
+
image_size = image_size.tolist()
|
122 |
+
|
123 |
+
best_resolution = select_best_resolution(image_size, grid_pinpoints)
|
124 |
+
height, width = best_resolution
|
125 |
+
num_patches = 0
|
126 |
+
# consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
|
127 |
+
for i in range(0, height, patch_size):
|
128 |
+
for j in range(0, width, patch_size):
|
129 |
+
num_patches += 1
|
130 |
+
# add the base patch
|
131 |
+
num_patches += 1
|
132 |
+
return num_patches
|
133 |
+
|
134 |
+
|
135 |
+
def unpad_image(tensor, original_size):
|
136 |
+
if not isinstance(original_size, (list, tuple)):
|
137 |
+
if not isinstance(original_size, (torch.Tensor, np.ndarray)):
|
138 |
+
raise TypeError(
|
139 |
+
f"image_size invalid type: {type(original_size)} not valid, should be either list, tuple, np.ndarray or tensor"
|
140 |
+
)
|
141 |
+
original_size = original_size.tolist()
|
142 |
+
original_height, original_width = original_size
|
143 |
+
current_height, current_width = tensor.shape[1:]
|
144 |
+
|
145 |
+
original_aspect_ratio = original_width / original_height
|
146 |
+
current_aspect_ratio = current_width / current_height
|
147 |
+
|
148 |
+
if original_aspect_ratio > current_aspect_ratio:
|
149 |
+
scale_factor = current_width / original_width
|
150 |
+
new_height = int(round(original_height * scale_factor, 7))
|
151 |
+
padding = (current_height - new_height) // 2
|
152 |
+
unpadded_tensor = tensor[:, padding : current_height - padding, :]
|
153 |
+
else:
|
154 |
+
scale_factor = current_height / original_height
|
155 |
+
new_width = int(round(original_width * scale_factor, 7))
|
156 |
+
padding = (current_width - new_width) // 2
|
157 |
+
unpadded_tensor = tensor[:, :, padding : current_width - padding]
|
158 |
+
|
159 |
+
return unpadded_tensor
|
160 |
+
|
161 |
+
|
162 |
+
class RPreTrainedModel(PreTrainedModel):
|
163 |
+
config_class = RConfig
|
164 |
+
base_model_prefix = ""
|
165 |
+
supports_gradient_checkpointing = True
|
166 |
+
# _no_split_modules = ["LlamaDecoderLayer"]
|
167 |
+
_no_split_modules = ["SiglipEncoderLayer", "Qwen3DecoderLayer", ]
|
168 |
+
_skip_keys_device_placement = "past_key_values"
|
169 |
+
_supports_cache_class = True
|
170 |
+
_supports_flash_attn_2 = True
|
171 |
+
_supports_sdpa = True
|
172 |
+
_supports_quantized_cache = True
|
173 |
+
_supports_static_cache = True
|
174 |
+
_supports_flex_attn = True
|
175 |
+
_supports_attention_backend = True
|
176 |
+
|
177 |
+
def _init_weights(self, module):
|
178 |
+
std = getattr(self.config, "initializer_range", self.config.get_text_config().initializer_range)
|
179 |
+
|
180 |
+
if isinstance(module, nn.Linear):
|
181 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
182 |
+
if module.bias is not None:
|
183 |
+
module.bias.data.zero_()
|
184 |
+
elif isinstance(module, RModel):
|
185 |
+
embed_std = 1 / math.sqrt(self.config.text_config.hidden_size)
|
186 |
+
module.image_newline.data.normal_(mean=0.0, std=embed_std)
|
187 |
+
|
188 |
+
|
189 |
+
class RMultiModalProjector(nn.Module):
|
190 |
+
def __init__(self, config):
|
191 |
+
super().__init__()
|
192 |
+
print("Using MultiModalProjector_withLayerNorm")
|
193 |
+
|
194 |
+
self.pre_norm = torch.nn.LayerNorm(config.vision_config.hidden_size, eps=1e-06)
|
195 |
+
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
|
196 |
+
self.act = GELUActivation()
|
197 |
+
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
198 |
+
|
199 |
+
|
200 |
+
def forward(self, image_feature: torch.Tensor) -> torch.Tensor:
|
201 |
+
image_feature = self.pre_norm(image_feature)
|
202 |
+
hidden_states = self.linear_1(image_feature)
|
203 |
+
hidden_states = self.act(hidden_states)
|
204 |
+
hidden_states = self.linear_2(hidden_states)
|
205 |
+
|
206 |
+
return hidden_states
|
207 |
+
|
208 |
+
class RModel(RPreTrainedModel):
|
209 |
+
_checkpoint_conversion_mapping = {"language_model.model": "language_model"}
|
210 |
+
|
211 |
+
def __init__(self, config):
|
212 |
+
super().__init__(config)
|
213 |
+
self.vision_tower = AutoModel.from_config(config.vision_config)
|
214 |
+
self.multi_modal_projector = RMultiModalProjector(config)
|
215 |
+
embed_std = 1 / math.sqrt(config.text_config.hidden_size)
|
216 |
+
self.image_newline = nn.Parameter(torch.randn(config.text_config.hidden_size, dtype=self.dtype) * embed_std)
|
217 |
+
|
218 |
+
self.vocab_size = config.text_config.vocab_size
|
219 |
+
self.language_model = AutoModel.from_config(config.text_config)
|
220 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
221 |
+
self.post_init()
|
222 |
+
|
223 |
+
def get_input_embeddings(self):
|
224 |
+
return self.language_model.get_input_embeddings()
|
225 |
+
|
226 |
+
def set_input_embeddings(self, value):
|
227 |
+
self.language_model.set_input_embeddings(value)
|
228 |
+
|
229 |
+
def pack_image_features(self, image_features, image_sizes, image_newline=None, vision_aspect_ratio="anyres"):
|
230 |
+
new_image_features = []
|
231 |
+
feature_lens = []
|
232 |
+
for image_idx, image_feature in enumerate(image_features):
|
233 |
+
if image_feature.shape[0] > 1:
|
234 |
+
base_image_feature = image_feature[0]
|
235 |
+
image_feature = image_feature[1:]
|
236 |
+
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
|
237 |
+
if height * width != base_image_feature.shape[0]:
|
238 |
+
raise ValueError("The number of patches is not consistent with the image size.")
|
239 |
+
num_patch_height, num_patch_width = get_anyres_image_grid_shape(
|
240 |
+
image_sizes[image_idx],
|
241 |
+
self.config.image_grid_pinpoints,
|
242 |
+
self.config.vision_config.image_size,
|
243 |
+
)
|
244 |
+
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
|
245 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
246 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
247 |
+
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
248 |
+
try:
|
249 |
+
max_num_patches = int(vision_aspect_ratio.strip("anyres_max_"))
|
250 |
+
channels, curr_height, curr_width = image_feature.shape
|
251 |
+
ratio = math.sqrt(curr_height * curr_width / (max_num_patches * height**2))
|
252 |
+
if ratio > 1.1:
|
253 |
+
image_feature = image_feature[None]
|
254 |
+
image_feature = nn.functional.interpolate(
|
255 |
+
image_feature, [int(curr_height // ratio), int(curr_width // ratio)], mode="bilinear"
|
256 |
+
)[0]
|
257 |
+
except:
|
258 |
+
pass
|
259 |
+
if image_newline is not None:
|
260 |
+
image_feature = torch.cat(
|
261 |
+
(
|
262 |
+
image_feature,
|
263 |
+
image_newline[:, None, None]
|
264 |
+
.expand(*image_feature.shape[:-1], 1)
|
265 |
+
.to(image_feature.device, image_feature.dtype),
|
266 |
+
),
|
267 |
+
dim=-1,
|
268 |
+
)
|
269 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
270 |
+
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
271 |
+
else:
|
272 |
+
image_feature = image_feature[0]
|
273 |
+
if image_newline is not None:
|
274 |
+
image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
|
275 |
+
image_feature = image_feature.flatten(0, 1)
|
276 |
+
new_image_features.append(image_feature)
|
277 |
+
feature_lens.append(image_feature.size(0))
|
278 |
+
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features[0].device)
|
279 |
+
return new_image_features, feature_lens
|
280 |
+
|
281 |
+
def get_image_features(
|
282 |
+
self,
|
283 |
+
pixel_values: torch.FloatTensor,
|
284 |
+
image_sizes: torch.Tensor,
|
285 |
+
vision_feature_layer: Optional[Union[int, list[int]]] = None,
|
286 |
+
vision_feature_select_strategy: Optional[str] = None,
|
287 |
+
vision_aspect_ratio: Optional[str] = None,
|
288 |
+
batch_num_images: Optional[torch.LongTensor] = None,
|
289 |
+
):
|
290 |
+
vision_feature_layer = (
|
291 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
292 |
+
)
|
293 |
+
vision_feature_select_strategy = (
|
294 |
+
vision_feature_select_strategy
|
295 |
+
if vision_feature_select_strategy is not None
|
296 |
+
else self.config.vision_feature_select_strategy
|
297 |
+
)
|
298 |
+
vision_aspect_ratio = (
|
299 |
+
vision_aspect_ratio if vision_aspect_ratio is not None else self.config.vision_aspect_ratio
|
300 |
+
)
|
301 |
+
|
302 |
+
if batch_num_images is None:
|
303 |
+
# treat this as a single-image case for backward compatibility
|
304 |
+
need_patching = [True] * len(image_sizes)
|
305 |
+
else:
|
306 |
+
need_patching = [n == 1 for n in batch_num_images for _ in range(n)]
|
307 |
+
image_num_patches = [
|
308 |
+
image_size_to_num_patches(
|
309 |
+
image_size=imsize,
|
310 |
+
grid_pinpoints=self.config.image_grid_pinpoints,
|
311 |
+
patch_size=self.config.vision_config.image_size,
|
312 |
+
)
|
313 |
+
if should_patch
|
314 |
+
else 1
|
315 |
+
for imsize, should_patch in zip(image_sizes, need_patching)
|
316 |
+
]
|
317 |
+
|
318 |
+
if isinstance(pixel_values, torch.Tensor):
|
319 |
+
if pixel_values.dim() == 5:
|
320 |
+
# stacked if input is (batch_size, num_patches, num_channels, height, width)
|
321 |
+
_pixel_values_list = [pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)]
|
322 |
+
pixel_values = torch.cat(_pixel_values_list, dim=0)
|
323 |
+
elif pixel_values.dim() != 4:
|
324 |
+
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
|
325 |
+
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
|
326 |
+
elif isinstance(pixel_values, list):
|
327 |
+
# list of [(batch_size, num_patches, num_channels, height, width)]
|
328 |
+
assert len(pixel_values) == len(image_num_patches), (
|
329 |
+
f"pixel_values is a list of {len(pixel_values)} tensors, but image_num_patches is of length {len(image_num_patches)}"
|
330 |
+
)
|
331 |
+
_pixel_values_list = [pix_val.squeeze(0)[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)]
|
332 |
+
|
333 |
+
pixel_values = torch.cat(_pixel_values_list, dim=0)
|
334 |
+
|
335 |
+
image_features = self.vision_tower(pixel_values, output_hidden_states=True)
|
336 |
+
# If we have one vision feature layer, return the corresponding hidden states,
|
337 |
+
# otherwise, select the hidden states of each feature layer and concatenate them
|
338 |
+
if isinstance(vision_feature_layer, int):
|
339 |
+
selected_image_feature = image_features.hidden_states[vision_feature_layer]
|
340 |
+
else:
|
341 |
+
hs_pool = [image_features.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
|
342 |
+
selected_image_feature = torch.cat(hs_pool, dim=-1)
|
343 |
+
|
344 |
+
if vision_feature_select_strategy == "default":
|
345 |
+
selected_image_feature = selected_image_feature[:, 1:]
|
346 |
+
elif vision_feature_select_strategy == "full":
|
347 |
+
selected_image_feature = selected_image_feature
|
348 |
+
image_features = self.multi_modal_projector(selected_image_feature)
|
349 |
+
|
350 |
+
image_features = torch.split(image_features, image_num_patches, dim=0)
|
351 |
+
|
352 |
+
image_features, feature_lens = self.pack_image_features(
|
353 |
+
image_features,
|
354 |
+
image_sizes,
|
355 |
+
image_newline=self.image_newline,
|
356 |
+
vision_aspect_ratio=vision_aspect_ratio,
|
357 |
+
)
|
358 |
+
|
359 |
+
return image_features
|
360 |
+
|
361 |
+
@can_return_tuple
|
362 |
+
def forward(
|
363 |
+
self,
|
364 |
+
input_ids: torch.LongTensor = None,
|
365 |
+
pixel_values: torch.FloatTensor = None,
|
366 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
367 |
+
pixel_values_videos: torch.FloatTensor = None,
|
368 |
+
image_sizes_videos: Optional[torch.LongTensor] = None,
|
369 |
+
attention_mask: Optional[torch.Tensor] = None,
|
370 |
+
position_ids: Optional[torch.LongTensor] = None,
|
371 |
+
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
372 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
373 |
+
vision_feature_layer: Optional[Union[int, list[int]]] = None,
|
374 |
+
vision_feature_select_strategy: Optional[str] = None,
|
375 |
+
vision_aspect_ratio: Optional[str] = None,
|
376 |
+
batch_num_images: Optional[torch.LongTensor] = None,
|
377 |
+
use_cache: Optional[bool] = None,
|
378 |
+
output_attentions: Optional[bool] = None,
|
379 |
+
output_hidden_states: Optional[bool] = None,
|
380 |
+
return_dict: Optional[bool] = None,
|
381 |
+
cache_position: Optional[torch.LongTensor] = None,
|
382 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
383 |
+
) -> Union[tuple, RModelOutputWithPast]:
|
384 |
+
|
385 |
+
|
386 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
387 |
+
output_hidden_states = (
|
388 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
389 |
+
)
|
390 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
391 |
+
vision_feature_layer = (
|
392 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
393 |
+
)
|
394 |
+
vision_feature_select_strategy = (
|
395 |
+
vision_feature_select_strategy
|
396 |
+
if vision_feature_select_strategy is not None
|
397 |
+
else self.config.vision_feature_select_strategy
|
398 |
+
)
|
399 |
+
vision_aspect_ratio = (
|
400 |
+
vision_aspect_ratio if vision_aspect_ratio is not None else self.config.vision_aspect_ratio
|
401 |
+
)
|
402 |
+
|
403 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
404 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
405 |
+
|
406 |
+
if (pixel_values is not None or pixel_values_videos is not None) and inputs_embeds is not None:
|
407 |
+
raise ValueError(
|
408 |
+
"You cannot specify both `pixel_values`/`pixel_values_videos` and `inputs_embeds` at the same time, "
|
409 |
+
"and must specify either one"
|
410 |
+
)
|
411 |
+
if inputs_embeds is None:
|
412 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
413 |
+
|
414 |
+
# Images are processed with Anyres
|
415 |
+
|
416 |
+
if pixel_values is not None:
|
417 |
+
image_features = self.get_image_features(
|
418 |
+
pixel_values,
|
419 |
+
image_sizes,
|
420 |
+
vision_feature_layer=vision_feature_layer,
|
421 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
422 |
+
batch_num_images=batch_num_images,
|
423 |
+
)
|
424 |
+
image_features = torch.cat(image_features, dim=0)
|
425 |
+
|
426 |
+
special_image_mask = (input_ids == self.config.image_token_id).unsqueeze(-1)
|
427 |
+
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
428 |
+
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
429 |
+
n_image_tokens = (input_ids == self.config.image_token_id).sum()
|
430 |
+
n_image_features = image_features.shape[0]
|
431 |
+
raise ValueError(
|
432 |
+
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
433 |
+
)
|
434 |
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
435 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
436 |
+
|
437 |
+
# Video are simply embedded and further pooled to decrease seq len
|
438 |
+
if pixel_values_videos is not None:
|
439 |
+
video_features = self.get_video_features(
|
440 |
+
pixel_values_videos,
|
441 |
+
vision_feature_layer=vision_feature_layer,
|
442 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
443 |
+
)
|
444 |
+
image_newline = (
|
445 |
+
self.image_newline[None, None, :].repeat(video_features.shape[0], 1, 1).to(video_features.device)
|
446 |
+
)
|
447 |
+
video_features = torch.cat((video_features, image_newline), dim=1)
|
448 |
+
video_features = video_features.flatten(0, 1)
|
449 |
+
|
450 |
+
special_video_mask = (input_ids == self.config.video_token_id).unsqueeze(-1)
|
451 |
+
special_video_mask = special_video_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
452 |
+
if not is_torchdynamo_compiling() and inputs_embeds[special_video_mask].numel() != video_features.numel():
|
453 |
+
n_video_tokens = (input_ids == self.config.video_token_id).sum()
|
454 |
+
n_video_features = video_features.shape[0]
|
455 |
+
raise ValueError(
|
456 |
+
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
|
457 |
+
)
|
458 |
+
video_features = video_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
459 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_video_mask, video_features)
|
460 |
+
|
461 |
+
outputs = self.language_model(
|
462 |
+
attention_mask=attention_mask,
|
463 |
+
position_ids=position_ids,
|
464 |
+
past_key_values=past_key_values,
|
465 |
+
inputs_embeds=inputs_embeds,
|
466 |
+
use_cache=use_cache,
|
467 |
+
output_attentions=output_attentions,
|
468 |
+
output_hidden_states=output_hidden_states,
|
469 |
+
return_dict=True,
|
470 |
+
cache_position=cache_position,
|
471 |
+
**kwargs,
|
472 |
+
)
|
473 |
+
|
474 |
+
return RModelOutputWithPast(
|
475 |
+
last_hidden_state=outputs.last_hidden_state,
|
476 |
+
past_key_values=outputs.past_key_values,
|
477 |
+
hidden_states=outputs.hidden_states,
|
478 |
+
attentions=outputs.attentions,
|
479 |
+
image_hidden_states=image_features if pixel_values is not None else None,
|
480 |
+
video_hidden_states=video_features if pixel_values_videos is not None else None,
|
481 |
+
)
|
482 |
+
|
483 |
+
def apply_pooling(self, image_features):
|
484 |
+
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
|
485 |
+
batch_frames, seq_len, dim = image_features.shape
|
486 |
+
image_features = image_features.view(batch_frames, height, width, -1)
|
487 |
+
image_features = image_features.permute(0, 3, 1, 2).contiguous()
|
488 |
+
|
489 |
+
height, width = image_features.shape[2:]
|
490 |
+
scaled_shape = [math.ceil(height / 2), math.ceil(width / 2)]
|
491 |
+
image_features = nn.functional.interpolate(image_features, size=scaled_shape, mode="bilinear")
|
492 |
+
|
493 |
+
image_features = image_features.permute(0, 2, 3, 1)
|
494 |
+
image_features = image_features.view(batch_frames, -1, dim)
|
495 |
+
return image_features
|
496 |
+
|
497 |
+
def get_video_features(
|
498 |
+
self,
|
499 |
+
pixel_values: torch.FloatTensor,
|
500 |
+
vision_feature_layer: Union[int, list[int]],
|
501 |
+
vision_feature_select_strategy: str,
|
502 |
+
):
|
503 |
+
batch_size, frames, channels, height, width = pixel_values.shape
|
504 |
+
pixel_values = pixel_values.view(batch_size * frames, channels, height, width)
|
505 |
+
video_features = self.vision_tower(pixel_values, output_hidden_states=True)
|
506 |
+
|
507 |
+
# If we have one vision feature layer, return the corresponding hidden states,
|
508 |
+
# otherwise, select the hidden states of each feature layer and concatenate them
|
509 |
+
if isinstance(vision_feature_layer, int):
|
510 |
+
selected_video_feature = video_features.hidden_states[vision_feature_layer]
|
511 |
+
else:
|
512 |
+
hs_pool = [video_features.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
|
513 |
+
selected_video_feature = torch.cat(hs_pool, dim=-1)
|
514 |
+
|
515 |
+
if vision_feature_select_strategy == "default":
|
516 |
+
selected_video_feature = selected_video_feature[:, 1:]
|
517 |
+
elif vision_feature_select_strategy == "full":
|
518 |
+
selected_video_feature = selected_video_feature
|
519 |
+
video_features = self.multi_modal_projector(selected_video_feature)
|
520 |
+
|
521 |
+
video_features = self.apply_pooling(video_features)
|
522 |
+
video_features = video_features.reshape(batch_size, frames * video_features.shape[1], -1)
|
523 |
+
|
524 |
+
return video_features
|
525 |
+
|
526 |
+
|
527 |
+
class RForConditionalGeneration(RPreTrainedModel, GenerationMixin):
|
528 |
+
_checkpoint_conversion_mapping = {
|
529 |
+
"^language_model.model": "model.language_model",
|
530 |
+
"^vision_tower": "model.vision_tower",
|
531 |
+
"^multi_modal_projector": "model.multi_modal_projector",
|
532 |
+
"^image_newline": "model.image_newline",
|
533 |
+
"^language_model.lm_head": "lm_head",
|
534 |
+
}
|
535 |
+
_tied_weights_keys = ["lm_head.weight"]
|
536 |
+
|
537 |
+
def __init__(self, config: RConfig):
|
538 |
+
super().__init__(config)
|
539 |
+
self.model = RModel(config)
|
540 |
+
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
|
541 |
+
self.post_init()
|
542 |
+
|
543 |
+
def get_input_embeddings(self):
|
544 |
+
return self.model.get_input_embeddings()
|
545 |
+
|
546 |
+
def set_input_embeddings(self, value):
|
547 |
+
self.model.set_input_embeddings(value)
|
548 |
+
|
549 |
+
def get_output_embeddings(self) -> nn.Module:
|
550 |
+
return self.lm_head
|
551 |
+
|
552 |
+
def set_output_embeddings(self, new_embeddings):
|
553 |
+
self.lm_head = new_embeddings
|
554 |
+
|
555 |
+
def set_decoder(self, decoder):
|
556 |
+
self.model = decoder
|
557 |
+
|
558 |
+
def get_decoder(self):
|
559 |
+
return self.model
|
560 |
+
|
561 |
+
def pack_image_features(self, image_features, image_sizes, vision_feature_select_strategy, image_newline=None):
|
562 |
+
return self.model.pack_image_features(
|
563 |
+
image_features=image_features,
|
564 |
+
image_sizes=image_sizes,
|
565 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
566 |
+
image_newline=image_newline,
|
567 |
+
)
|
568 |
+
|
569 |
+
def get_image_features(
|
570 |
+
self,
|
571 |
+
pixel_values: torch.FloatTensor,
|
572 |
+
image_sizes: torch.Tensor,
|
573 |
+
vision_feature_layer: Optional[Union[int, list[int]]] = None,
|
574 |
+
vision_feature_select_strategy: Optional[str] = None,
|
575 |
+
):
|
576 |
+
return self.model.get_image_features(
|
577 |
+
pixel_values=pixel_values,
|
578 |
+
image_sizes=image_sizes,
|
579 |
+
vision_feature_layer=vision_feature_layer,
|
580 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
581 |
+
)
|
582 |
+
|
583 |
+
# Make modules available throught conditional class for BC
|
584 |
+
@property
|
585 |
+
def language_model(self):
|
586 |
+
return self.model.language_model
|
587 |
+
|
588 |
+
@property
|
589 |
+
def vision_tower(self):
|
590 |
+
return self.model.vision_tower
|
591 |
+
|
592 |
+
@property
|
593 |
+
def multi_modal_projector(self):
|
594 |
+
return self.model.multi_modal_projector
|
595 |
+
|
596 |
+
@can_return_tuple
|
597 |
+
def forward(
|
598 |
+
self,
|
599 |
+
input_ids: torch.LongTensor = None,
|
600 |
+
pixel_values: torch.FloatTensor = None,
|
601 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
602 |
+
pixel_values_videos: torch.FloatTensor = None,
|
603 |
+
image_sizes_videos: Optional[torch.LongTensor] = None,
|
604 |
+
attention_mask: Optional[torch.Tensor] = None,
|
605 |
+
position_ids: Optional[torch.LongTensor] = None,
|
606 |
+
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
607 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
608 |
+
vision_feature_layer: Optional[Union[int, list[int]]] = None,
|
609 |
+
vision_feature_select_strategy: Optional[str] = None,
|
610 |
+
vision_aspect_ratio: Optional[str] = None,
|
611 |
+
batch_num_images: Optional[torch.LongTensor] = None,
|
612 |
+
labels: Optional[torch.LongTensor] = None,
|
613 |
+
use_cache: Optional[bool] = None,
|
614 |
+
output_attentions: Optional[bool] = None,
|
615 |
+
output_hidden_states: Optional[bool] = None,
|
616 |
+
return_dict: Optional[bool] = None,
|
617 |
+
cache_position: Optional[torch.LongTensor] = None,
|
618 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
619 |
+
**kwargs,
|
620 |
+
) -> Union[tuple, RCausalLMOutputWithPast]:
|
621 |
+
|
622 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
623 |
+
output_hidden_states = (
|
624 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
625 |
+
)
|
626 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
627 |
+
vision_feature_layer = (
|
628 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
629 |
+
)
|
630 |
+
vision_feature_select_strategy = (
|
631 |
+
vision_feature_select_strategy
|
632 |
+
if vision_feature_select_strategy is not None
|
633 |
+
else self.config.vision_feature_select_strategy
|
634 |
+
)
|
635 |
+
vision_aspect_ratio = (
|
636 |
+
vision_aspect_ratio if vision_aspect_ratio is not None else self.config.vision_aspect_ratio
|
637 |
+
)
|
638 |
+
|
639 |
+
|
640 |
+
|
641 |
+
outputs = self.model(
|
642 |
+
input_ids=input_ids,
|
643 |
+
pixel_values=pixel_values,
|
644 |
+
pixel_values_videos=pixel_values_videos,
|
645 |
+
image_sizes=image_sizes,
|
646 |
+
image_sizes_videos=image_sizes_videos,
|
647 |
+
vision_aspect_ratio=vision_aspect_ratio,
|
648 |
+
vision_feature_layer=vision_feature_layer,
|
649 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
650 |
+
batch_num_images=batch_num_images,
|
651 |
+
attention_mask=attention_mask,
|
652 |
+
position_ids=position_ids,
|
653 |
+
past_key_values=past_key_values,
|
654 |
+
inputs_embeds=inputs_embeds,
|
655 |
+
use_cache=use_cache,
|
656 |
+
output_attentions=output_attentions,
|
657 |
+
output_hidden_states=output_hidden_states,
|
658 |
+
return_dict=True,
|
659 |
+
cache_position=cache_position,
|
660 |
+
logits_to_keep=logits_to_keep,
|
661 |
+
**kwargs,
|
662 |
+
)
|
663 |
+
|
664 |
+
hidden_states = outputs[0]
|
665 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
666 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
667 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
668 |
+
|
669 |
+
loss = None
|
670 |
+
if labels is not None:
|
671 |
+
loss = self.loss_function(
|
672 |
+
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs
|
673 |
+
)
|
674 |
+
|
675 |
+
return RCausalLMOutputWithPast(
|
676 |
+
loss=loss,
|
677 |
+
logits=logits,
|
678 |
+
past_key_values=outputs.past_key_values,
|
679 |
+
hidden_states=outputs.hidden_states,
|
680 |
+
attentions=outputs.attentions,
|
681 |
+
image_hidden_states=outputs.image_hidden_states,
|
682 |
+
video_hidden_states=outputs.video_hidden_states,
|
683 |
+
)
|
684 |
+
|
685 |
+
def prepare_inputs_for_generation(
|
686 |
+
self,
|
687 |
+
input_ids,
|
688 |
+
past_key_values=None,
|
689 |
+
inputs_embeds=None,
|
690 |
+
pixel_values=None,
|
691 |
+
image_sizes=None,
|
692 |
+
pixel_values_videos=None,
|
693 |
+
image_sizes_videos=None,
|
694 |
+
attention_mask=None,
|
695 |
+
cache_position=None,
|
696 |
+
logits_to_keep=None,
|
697 |
+
**kwargs,
|
698 |
+
):
|
699 |
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
700 |
+
|
701 |
+
model_inputs = super().prepare_inputs_for_generation(
|
702 |
+
input_ids,
|
703 |
+
past_key_values=past_key_values,
|
704 |
+
inputs_embeds=inputs_embeds,
|
705 |
+
attention_mask=attention_mask,
|
706 |
+
cache_position=cache_position,
|
707 |
+
logits_to_keep=logits_to_keep,
|
708 |
+
**kwargs,
|
709 |
+
)
|
710 |
+
|
711 |
+
if cache_position[0] == 0:
|
712 |
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
713 |
+
# Otherwise we need pixel values to be passed to model
|
714 |
+
model_inputs["pixel_values"] = pixel_values
|
715 |
+
model_inputs["image_sizes"] = image_sizes
|
716 |
+
model_inputs["pixel_values_videos"] = pixel_values_videos
|
717 |
+
model_inputs["image_sizes_videos"] = image_sizes_videos
|
718 |
+
|
719 |
+
return model_inputs
|
720 |
+
|
721 |
+
@staticmethod
|
722 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
723 |
+
attention_mask: torch.Tensor,
|
724 |
+
sequence_length: int,
|
725 |
+
target_length: int,
|
726 |
+
dtype: torch.dtype,
|
727 |
+
cache_position: torch.Tensor,
|
728 |
+
batch_size: int,
|
729 |
+
**kwargs,
|
730 |
+
):
|
731 |
+
|
732 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
733 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
734 |
+
causal_mask = attention_mask
|
735 |
+
else:
|
736 |
+
min_dtype = torch.finfo(dtype).min
|
737 |
+
causal_mask = torch.full(
|
738 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
739 |
+
)
|
740 |
+
if sequence_length != 1:
|
741 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
742 |
+
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
743 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
744 |
+
if attention_mask is not None:
|
745 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
746 |
+
mask_length = attention_mask.shape[-1]
|
747 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
748 |
+
causal_mask.device
|
749 |
+
)
|
750 |
+
padding_mask = padding_mask == 0
|
751 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
752 |
+
padding_mask, min_dtype
|
753 |
+
)
|
754 |
+
|
755 |
+
return causal_mask
|
756 |
+
|
757 |
+
def get_video_features(
|
758 |
+
self,
|
759 |
+
pixel_values: torch.FloatTensor,
|
760 |
+
vision_feature_layer: Optional[Union[int, list[int]]] = None,
|
761 |
+
vision_feature_select_strategy: Optional[str] = None,
|
762 |
+
):
|
763 |
+
return self.model.get_video_features(
|
764 |
+
pixel_values=pixel_values,
|
765 |
+
vision_feature_layer=vision_feature_layer,
|
766 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
767 |
+
)
|
768 |
+
|
769 |
+
|
770 |
+
__all__ = ["RModel", "RForConditionalGeneration", "RPreTrainedModel"]
|
preprocessor_config.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": null,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_pad": true,
|
5 |
+
"do_rescale": true,
|
6 |
+
"do_resize": true,
|
7 |
+
"image_grid_pinpoints": [
|
8 |
+
[
|
9 |
+
384,
|
10 |
+
768
|
11 |
+
],
|
12 |
+
[
|
13 |
+
768,
|
14 |
+
384
|
15 |
+
],
|
16 |
+
[
|
17 |
+
768,
|
18 |
+
768
|
19 |
+
],
|
20 |
+
[
|
21 |
+
1152,
|
22 |
+
384
|
23 |
+
],
|
24 |
+
[
|
25 |
+
384,
|
26 |
+
1152
|
27 |
+
]
|
28 |
+
],
|
29 |
+
"image_mean": [
|
30 |
+
0.5,
|
31 |
+
0.5,
|
32 |
+
0.5
|
33 |
+
],
|
34 |
+
"image_processor_type": "RImageProcessor",
|
35 |
+
"image_std": [
|
36 |
+
0.5,
|
37 |
+
0.5,
|
38 |
+
0.5
|
39 |
+
],
|
40 |
+
"processor_class": "RProcessor",
|
41 |
+
"auto_map": {
|
42 |
+
"AutoProcessor": "processing_r.RProcessor",
|
43 |
+
"AutoImageProcessor": "image_processing_r.RImageProcessor"
|
44 |
+
},
|
45 |
+
"resample": 2,
|
46 |
+
"rescale_factor": 0.00392156862745098,
|
47 |
+
"size": {
|
48 |
+
"height": 384,
|
49 |
+
"width": 384
|
50 |
+
}
|
51 |
+
}
|
processing_xvl.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
2 |
+
# you may not use this file except in compliance with the License.
|
3 |
+
# You may obtain a copy of the License at
|
4 |
+
#
|
5 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6 |
+
#
|
7 |
+
# Unless required by applicable law or agreed to in writing, software
|
8 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
9 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
10 |
+
# See the License for the specific language governing permissions and
|
11 |
+
# limitations under the License.
|
12 |
+
|
13 |
+
|
14 |
+
import math
|
15 |
+
from collections.abc import Iterable
|
16 |
+
from typing import Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
from transformers.feature_extraction_utils import BatchFeature
|
21 |
+
from transformers.image_processing_utils import select_best_resolution
|
22 |
+
from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
|
23 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
24 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
class RProcessorKwargs(ProcessingKwargs, total=False):
|
32 |
+
# see processing_utils.ProcessingKwargs documentation for usage.
|
33 |
+
_defaults = {
|
34 |
+
"text_kwargs": {
|
35 |
+
"padding": False,
|
36 |
+
|
37 |
+
},
|
38 |
+
"image_kwargs": {},
|
39 |
+
"videos_kwargs": {},
|
40 |
+
}
|
41 |
+
|
42 |
+
|
43 |
+
class RProcessor(ProcessorMixin):
|
44 |
+
attributes = ["image_processor", "tokenizer", "video_processor"]
|
45 |
+
valid_kwargs = [
|
46 |
+
"chat_template",
|
47 |
+
"num_image_tokens",
|
48 |
+
"image_processor_type",
|
49 |
+
"vision_feature_select_strategy",
|
50 |
+
"image_token",
|
51 |
+
"video_token",
|
52 |
+
"vision_aspect_ratio",
|
53 |
+
]
|
54 |
+
image_processor_class = "AutoImageProcessor"
|
55 |
+
tokenizer_class = "AutoTokenizer"
|
56 |
+
video_processor_class = "AutoVideoProcessor"
|
57 |
+
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
image_processor=None,
|
61 |
+
tokenizer=None,
|
62 |
+
video_processor=None,
|
63 |
+
num_image_tokens=None,
|
64 |
+
vision_feature_select_strategy=None,
|
65 |
+
chat_template=None,
|
66 |
+
image_token="<image>",
|
67 |
+
video_token="<video>",
|
68 |
+
vision_aspect_ratio= "anyres",
|
69 |
+
**kwargs,
|
70 |
+
):
|
71 |
+
self.num_image_tokens = num_image_tokens
|
72 |
+
self.vision_feature_select_strategy = vision_feature_select_strategy
|
73 |
+
self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token
|
74 |
+
self.video_token = tokenizer.video_token if hasattr(tokenizer, "video_token") else video_token
|
75 |
+
self.image_token_id = (
|
76 |
+
tokenizer.image_token_id
|
77 |
+
if getattr(tokenizer, "image_token_id", None)
|
78 |
+
else tokenizer.convert_tokens_to_ids(self.image_token)
|
79 |
+
)
|
80 |
+
self.video_token_id = (
|
81 |
+
tokenizer.video_token_id
|
82 |
+
if getattr(tokenizer, "video_token_id", None)
|
83 |
+
else tokenizer.convert_tokens_to_ids(self.video_token)
|
84 |
+
)
|
85 |
+
self.vision_aspect_ratio = vision_aspect_ratio
|
86 |
+
super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template)
|
87 |
+
|
88 |
+
def __call__(
|
89 |
+
self,
|
90 |
+
images: ImageInput = None,
|
91 |
+
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
|
92 |
+
audio=None,
|
93 |
+
videos=None,
|
94 |
+
**kwargs: Unpack[RProcessorKwargs],
|
95 |
+
) -> BatchFeature:
|
96 |
+
output_kwargs = self._merge_kwargs(
|
97 |
+
RProcessorKwargs,
|
98 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
99 |
+
**kwargs,
|
100 |
+
)
|
101 |
+
|
102 |
+
if isinstance(text, str):
|
103 |
+
text = [text]
|
104 |
+
elif not isinstance(text, list) and not isinstance(text[0], str):
|
105 |
+
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
106 |
+
|
107 |
+
image_inputs = video_inputs = {}
|
108 |
+
|
109 |
+
if images is not None:
|
110 |
+
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
|
111 |
+
|
112 |
+
batch_num_images = iter(image_inputs["batch_num_images"])
|
113 |
+
image_sizes = iter(image_inputs["image_sizes"])
|
114 |
+
height, width = get_image_size(
|
115 |
+
to_numpy_array(image_inputs["pixel_values"][0][0]),
|
116 |
+
channel_dim=output_kwargs["images_kwargs"].get("data_format"),
|
117 |
+
)
|
118 |
+
text, num_image_tokens = self._expand_image_tokens(
|
119 |
+
text, image_sizes, height, width, self.image_token, batch_num_images
|
120 |
+
)
|
121 |
+
|
122 |
+
if videos is not None:
|
123 |
+
video_inputs = self.video_processor(videos, **output_kwargs["videos_kwargs"])
|
124 |
+
|
125 |
+
one_video = video_inputs.get("pixel_values_videos")[0]
|
126 |
+
if isinstance(video_inputs.get("pixel_values_videos")[0], (list, tuple)):
|
127 |
+
one_video = np.array(one_video)
|
128 |
+
else:
|
129 |
+
one_video = to_numpy_array(one_video)
|
130 |
+
height, width = get_image_size(one_video[0], channel_dim=output_kwargs["images_kwargs"].get("data_format"))
|
131 |
+
num_frames = one_video.shape[0] # frame dim is always after batch dim
|
132 |
+
patches_height_width = int(math.sqrt(self.num_image_tokens))
|
133 |
+
pooled_height_width = math.ceil(patches_height_width / 2)
|
134 |
+
num_video_tokens = (num_frames * pooled_height_width * pooled_height_width) + 1 # +1 for newline token
|
135 |
+
text = [sample.replace(self.video_token, self.video_token * num_video_tokens) for sample in text]
|
136 |
+
|
137 |
+
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
|
138 |
+
|
139 |
+
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
140 |
+
self._check_special_mm_tokens(text, text_inputs, modalities=["image"])
|
141 |
+
|
142 |
+
|
143 |
+
return BatchFeature(data={**text_inputs, **image_inputs, **video_inputs}, tensor_type=return_tensors)
|
144 |
+
|
145 |
+
def _expand_image_tokens(
|
146 |
+
self,
|
147 |
+
text: list[TextInput],
|
148 |
+
image_sizes: Iterable[Union[list[int], int]],
|
149 |
+
height: int,
|
150 |
+
width: int,
|
151 |
+
special_token: str,
|
152 |
+
batch_num_images: Iterable[int],
|
153 |
+
):
|
154 |
+
|
155 |
+
prompt_strings = []
|
156 |
+
max_num_vision_tokens = 0
|
157 |
+
for sample in text:
|
158 |
+
if special_token in sample:
|
159 |
+
is_multi_image = next(batch_num_images) != 1
|
160 |
+
else:
|
161 |
+
is_multi_image = False
|
162 |
+
while special_token in sample:
|
163 |
+
if is_multi_image:
|
164 |
+
num_image_tokens = self.num_image_tokens + 1 # one for image_newline
|
165 |
+
else:
|
166 |
+
original_size = next(image_sizes)
|
167 |
+
if not isinstance(original_size, (list, tuple)):
|
168 |
+
# cast to list to avoid numerical precision errors when calculating unpadding
|
169 |
+
original_size = original_size.tolist()
|
170 |
+
orig_height, orig_width = original_size
|
171 |
+
num_image_tokens = self._get_number_of_features(orig_height, orig_width, height, width)
|
172 |
+
max_num_vision_tokens = max(max_num_vision_tokens, num_image_tokens)
|
173 |
+
if self.vision_feature_select_strategy == "default":
|
174 |
+
num_image_tokens -= 1
|
175 |
+
sample = sample.replace(special_token, "<placeholder>" * num_image_tokens, 1)
|
176 |
+
prompt_strings.append(sample)
|
177 |
+
text = [sample.replace("<placeholder>", special_token) for sample in prompt_strings]
|
178 |
+
return text, max_num_vision_tokens
|
179 |
+
|
180 |
+
def _get_number_of_features(self, orig_height: int, orig_width: int, height: int, width: int) -> int:
|
181 |
+
image_grid_pinpoints = self.image_processor.image_grid_pinpoints
|
182 |
+
|
183 |
+
height_best_resolution, width_best_resolution = select_best_resolution(
|
184 |
+
[orig_height, orig_width], image_grid_pinpoints
|
185 |
+
)
|
186 |
+
scale_height, scale_width = height_best_resolution // height, width_best_resolution // width
|
187 |
+
|
188 |
+
patches_height = patches_width = int(math.sqrt(self.num_image_tokens))
|
189 |
+
unpadded_features, newline_features = self._get_unpadded_features(
|
190 |
+
orig_height, orig_width, patches_height, patches_width, scale_height, scale_width
|
191 |
+
)
|
192 |
+
|
193 |
+
# The base patch covers the entire image (no CLS for SigLIP)
|
194 |
+
base_features = self.num_image_tokens
|
195 |
+
num_image_tokens = unpadded_features + newline_features + base_features
|
196 |
+
return num_image_tokens
|
197 |
+
|
198 |
+
# Adapted from transformers.models.llava_next.processing_llava_next.LlavaNextProcessor._get_unpadded_features
|
199 |
+
def _get_unpadded_features(self, height, width, patches_height, patches_width, scale_height, scale_width):
|
200 |
+
current_height = patches_height * scale_height
|
201 |
+
current_width = patches_width * scale_width
|
202 |
+
|
203 |
+
original_aspect_ratio = width / height
|
204 |
+
current_aspect_ratio = current_width / current_height
|
205 |
+
if original_aspect_ratio > current_aspect_ratio:
|
206 |
+
new_height = int(round(height * (current_width / width), 7))
|
207 |
+
padding = (current_height - new_height) // 2
|
208 |
+
current_height -= padding * 2
|
209 |
+
else:
|
210 |
+
new_width = int(round(width * (current_height / height), 7))
|
211 |
+
padding = (current_width - new_width) // 2
|
212 |
+
current_width -= padding * 2
|
213 |
+
|
214 |
+
unpadded_features = current_height * current_width
|
215 |
+
newline_features = current_height
|
216 |
+
|
217 |
+
return (unpadded_features, newline_features)
|
218 |
+
|
219 |
+
|
220 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
221 |
+
def batch_decode(self, *args, **kwargs):
|
222 |
+
"""
|
223 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
224 |
+
refer to the docstring of this method for more information.
|
225 |
+
"""
|
226 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
227 |
+
|
228 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
229 |
+
def decode(self, *args, **kwargs):
|
230 |
+
"""
|
231 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
232 |
+
the docstring of this method for more information.
|
233 |
+
"""
|
234 |
+
return self.tokenizer.decode(*args, **kwargs)
|
235 |
+
|
236 |
+
@property
|
237 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
238 |
+
def model_input_names(self):
|
239 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
240 |
+
image_processor_input_names = self.image_processor.model_input_names
|
241 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
242 |
+
|
243 |
+
|
244 |
+
__all__ = ["RProcessor"]
|
processor_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"image_token": "<image>",
|
3 |
+
"num_image_tokens": 729,
|
4 |
+
"processor_class": "RProcessor",
|
5 |
+
"auto_map": {
|
6 |
+
"AutoProcessor": "processing_r.RProcessor",
|
7 |
+
"AutoImageProcessor": "image_processing_r.RImageProcessor"
|
8 |
+
},
|
9 |
+
"video_token": "<video>",
|
10 |
+
"vision_aspect_ratio": "anyres",
|
11 |
+
"vision_feature_select_strategy": "full"
|
12 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6a4e9901c580f8acc48cdbd2618c3b0ec673dcb91d44b555171844c707f28d2
|
3 |
+
size 11423022
|
tokenizer_config.json
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
},
|
213 |
+
"151669": {
|
214 |
+
"content": "<image>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": true
|
220 |
+
},
|
221 |
+
"151670": {
|
222 |
+
"content": "<video>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": true
|
228 |
+
}
|
229 |
+
},
|
230 |
+
"additional_special_tokens": [
|
231 |
+
"<|im_start|>",
|
232 |
+
"<|im_end|>",
|
233 |
+
"<|object_ref_start|>",
|
234 |
+
"<|object_ref_end|>",
|
235 |
+
"<|box_start|>",
|
236 |
+
"<|box_end|>",
|
237 |
+
"<|quad_start|>",
|
238 |
+
"<|quad_end|>",
|
239 |
+
"<|vision_start|>",
|
240 |
+
"<|vision_end|>",
|
241 |
+
"<|vision_pad|>",
|
242 |
+
"<|image_pad|>",
|
243 |
+
"<|video_pad|>"
|
244 |
+
],
|
245 |
+
"bos_token": null,
|
246 |
+
"clean_up_tokenization_spaces": false,
|
247 |
+
"eos_token": "<|im_end|>",
|
248 |
+
"errors": "replace",
|
249 |
+
"extra_special_tokens": {},
|
250 |
+
"model_max_length": 131072,
|
251 |
+
"pad_token": "<|endoftext|>",
|
252 |
+
"processor_class": "processing_r.RProcessor",
|
253 |
+
"split_special_tokens": false,
|
254 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
255 |
+
"unk_token": null
|
256 |
+
}
|
video_preprocessor_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_pad": true,
|
5 |
+
"do_rescale": true,
|
6 |
+
"do_resize": true,
|
7 |
+
"image_mean": [
|
8 |
+
0.5,
|
9 |
+
0.5,
|
10 |
+
0.5
|
11 |
+
],
|
12 |
+
"video_processor_type": "LlavaOnevisionVideoProcessor",
|
13 |
+
"image_std": [
|
14 |
+
0.5,
|
15 |
+
0.5,
|
16 |
+
0.5
|
17 |
+
],
|
18 |
+
"processor_class": "LlavaOnevisionProcessor",
|
19 |
+
"resample": 3,
|
20 |
+
"rescale_factor": 0.00392156862745098,
|
21 |
+
"size": {
|
22 |
+
"height": 384,
|
23 |
+
"width": 384
|
24 |
+
}
|
25 |
+
}
|
26 |
+
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|