YannQi commited on
Commit
d68afe0
·
verified ·
1 Parent(s): 7f648cf

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ asset/R-4B.png filter=lfs diff=lfs merge=lfs -text
37
+ asset/performance.png filter=lfs diff=lfs merge=lfs -text
38
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,137 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - Qwen/Qwen3-4B
7
+ pipeline_tag: visual-question-answering
8
+ ---
9
+ # R-4B
10
+
11
+ [[📚 Arxiv Paper (Coming soon)](https://huggingface.co/YannQi/R-4B))] [[🤗 Hugging Face](https://huggingface.co/YannQi/R-4B)] [[🤖️ ModelScope](https://huggingface.co/YannQi/R-4B)] [[💻 Code](https://github.com/yannqi/R-4B)]
12
+
13
+ <div align="center">
14
+ <img src="asset/R-4B.png" width="100%" alt="R-4B Performance">
15
+ </div>
16
+
17
+ ## ⭐️ Introduction
18
+
19
+ In this report, we present **R-4B**, a multimodal large language model designed to achieve adaptive multimodal reasoning—dynamically choosing between step-by-step thinking and direct response generation based on task complexity. This capability enables R-4B to deliver high-quality responses while significantly improving inference efficiency and reducing computational costs.
20
+
21
+ The development of R-4B follows a two-stage training paradigm:
22
+ (1) Dual-Capability Pretraining, which establishes both thinking and non-thinking capabilities for VQA; and
23
+ (2) Adaptive Thinking Post-Training, which enables the model to adaptively switch between modes based on input demands.
24
+
25
+ R-4B achieves state-of-the-art performance among models of its scale. In evaluations across multiple public benchmarks, R-4B outperforms Qwen2.5-VL-7B on nearly all tasks. Notably, it matches or exceeds the performance of the much larger Kimi-VL-Thinking-2506 (3B activated, 16B total parameters).
26
+
27
+ ## 🔥 Quickstart
28
+
29
+ Below, we provide simple examples to show how to use R-4B with 🤗 Transformers.
30
+
31
+ <!-- The code of R-4B has been in the latest Hugging face transformers and we advise you to build from source with command: (Coming Soon!)
32
+
33
+ ```
34
+ pip install git+https://github.com/huggingface/transformers accelerate
35
+ ``` -->
36
+
37
+ ### Using 🤗 Transformers to Chat
38
+
39
+ > [!NOTE]
40
+ > Following Qwen3, we also offer a hard switch mechanism that lets users dynamically control the model's behavior.
41
+
42
+ ```python
43
+ import requests
44
+ import torch
45
+ from transformers import AutoModel, AutoProcessor
46
+
47
+
48
+ model_path = "YannQi/R-4B"
49
+
50
+ from PIL import Image
51
+ model = AutoModel.from_pretrained(
52
+ model_path,
53
+ torch_dtype=torch.float16,
54
+ trust_remote_code=True,
55
+ ).to('cuda')
56
+
57
+ # default processer
58
+ processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
59
+
60
+
61
+ image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
62
+ messages = [
63
+ {
64
+ "role": "user",
65
+ "content": [
66
+ {
67
+ "type": "image",
68
+ "image": f"{image_file}",
69
+ },
70
+ {"type": "text", "text": "描述该图片。"},
71
+ ],
72
+ }
73
+ ]
74
+
75
+ # Preparation for inference
76
+
77
+ text_auto_thinking = processor.apply_chat_template(
78
+ messages, tokenize=False, add_generation_prompt=True) # thinking_mode='long' for thinking mode; thinking_mode='short' for non-thinking mode; Defalut is auto-thinking mode.
79
+
80
+ raw_image = Image.open(requests.get(image_file, stream=True).raw)
81
+
82
+ inputs_auto_thinking = processor(images=raw_image, text=text_auto_thinking, return_tensors='pt').to(0, torch.float16)
83
+
84
+ inputs_auto_thinking = inputs_auto_thinking.to("cuda")
85
+
86
+
87
+ # Inference: Generation of the output
88
+
89
+
90
+ generated_ids_auto_thinking = model.generate(**inputs_auto_thinking, max_new_tokens=8192)
91
+ generated_ids_trimmed_auto_thinking = [
92
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs_auto_thinking.input_ids, generated_ids_auto_thinking)
93
+ ]
94
+
95
+
96
+ output_text_auto_thinking = processor.batch_decode(
97
+ generated_ids_trimmed_auto_thinking, skip_special_tokens=True, clean_up_tokenization_spaces=False
98
+ )
99
+
100
+
101
+ print("Auto Thinking Output:", output_text_auto_thinking)
102
+
103
+ ```
104
+
105
+ </details>
106
+
107
+ ## 📈 Experimental Results
108
+
109
+ <div align="center">
110
+ <img src="asset/performance.png" width="100%" alt="R-4B Performance">
111
+ </div>
112
+
113
+ 1. R-4B establishes itself with powerful, state-of-the-art perceptual abilities that are competitive with larger models.
114
+ 2. In evaluation sets that require complex logical reasoning and mathematical problem-solving, such as WeMath, MathVerse, and LogicVista, R-4B displays a strong performance curve. This highlights its advanced adaptive thinking capacity for logical deduction and solving complex quantitative problems.
115
+
116
+ ## ✒️ Citation
117
+
118
+ Coming soon!
119
+
120
+ <!-- If you find our work helpful for your research, please consider citing our work. -->
121
+
122
+ <!--
123
+ ```bibtex
124
+ @misc{R-4B,
125
+ title={R-4B: Adaptive Vision-Language Reasoning for Efficient Inference},
126
+ author={Z},
127
+ year={2025},
128
+ eprint={ },
129
+ archivePrefix={arXiv},
130
+ primaryClass={cs.CV},
131
+ url={ },
132
+ }
133
+ ``` -->
134
+
135
+ ## Acknowledgement
136
+
137
+ R-4B is developed based on the codebases of the following projects: [LLaVA-Next](https://github.com/LLaVA-VL/LLaVA-NeXT), [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384), [Qwen3](https://github.com/QwenLM/Qwen3), [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL), [VLMEvalKit](https://github.com/open-compass/VLMEvalKit). We sincerely thank these projects for their outstanding work.
added_tokens.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<image>": 151669,
6
+ "<think>": 151667,
7
+ "<tool_call>": 151657,
8
+ "<tool_response>": 151665,
9
+ "<video>": 151670,
10
+ "<|box_end|>": 151649,
11
+ "<|box_start|>": 151648,
12
+ "<|endoftext|>": 151643,
13
+ "<|file_sep|>": 151664,
14
+ "<|fim_middle|>": 151660,
15
+ "<|fim_pad|>": 151662,
16
+ "<|fim_prefix|>": 151659,
17
+ "<|fim_suffix|>": 151661,
18
+ "<|im_end|>": 151645,
19
+ "<|im_start|>": 151644,
20
+ "<|image_pad|>": 151655,
21
+ "<|object_ref_end|>": 151647,
22
+ "<|object_ref_start|>": 151646,
23
+ "<|quad_end|>": 151651,
24
+ "<|quad_start|>": 151650,
25
+ "<|repo_name|>": 151663,
26
+ "<|video_pad|>": 151656,
27
+ "<|vision_end|>": 151653,
28
+ "<|vision_pad|>": 151654,
29
+ "<|vision_start|>": 151652
30
+ }
asset/R-4B.png ADDED

Git LFS Details

  • SHA256: c45782ee8cc7981d1056e93a59e8b55275592a7b82aaba421d75b4f3b7ba092a
  • Pointer size: 132 Bytes
  • Size of remote file: 3.45 MB
asset/performance.png ADDED

Git LFS Details

  • SHA256: 0e69a5c684d78443419d490675dfaed4280ea80e69276373666187776e89e2a0
  • Pointer size: 131 Bytes
  • Size of remote file: 291 kB
chat_template.jinja ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {% for message in messages %}{{'<|im_start|>' + message['role'] + '
2
+ '}}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>
3
+ ' }}{% endfor %}{# Render all video then #}{% for content in message['content'] | selectattr('type', 'equalto', 'video') %}{{ '<video>
4
+ ' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] }}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] }}{% endgeneration %}{% endfor %}{% endif %}{{'<|im_end|>' + '
5
+ '}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant
6
+ <think>' }}{% endif %}{%- if add_generation_prompt %}{%- if thinking_mode is defined and thinking_mode == 'short' %}{{- '
7
+
8
+ </think>
9
+
10
+ ' }}{%- endif %}{%- if thinking_mode is defined and thinking_mode == 'long' %}{{- '
11
+ ' }}{%- endif %}{%- endif %}
config.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoConfig": "configuration_r.RConfig",
4
+ "AutoModel": "modeling_r.RForConditionalGeneration",
5
+ "AutoModelForCausalLM": "modeling_r.RForConditionalGeneration"
6
+ },
7
+ "architectures": [
8
+ "RForConditionalGeneration"
9
+ ],
10
+ "eos_token_id": 151645,
11
+ "image_grid_pinpoints": [
12
+ [
13
+ 384,
14
+ 768
15
+ ],
16
+ [
17
+ 768,
18
+ 384
19
+ ],
20
+ [
21
+ 768,
22
+ 768
23
+ ],
24
+ [
25
+ 1152,
26
+ 384
27
+ ],
28
+ [
29
+ 384,
30
+ 1152
31
+ ]
32
+ ],
33
+ "image_token_index": 151669,
34
+ "model_type": "R",
35
+ "multimodal_projector_bias": true,
36
+ "pad_token_id": 151643,
37
+ "projector_hidden_act": "gelu",
38
+ "text_config": {
39
+ "_name_or_path": "Qwen/Qwen3-4B",
40
+ "architectures": [
41
+ "Qwen3ForCausalLM"
42
+ ],
43
+ "attention_bias": false,
44
+ "attention_dropout": 0.0,
45
+ "bos_token_id": 151643,
46
+ "eos_token_id": 151645,
47
+ "head_dim": 128,
48
+ "hidden_act": "silu",
49
+ "hidden_size": 2560,
50
+ "initializer_range": 0.02,
51
+ "intermediate_size": 9728,
52
+ "max_position_embeddings": 40960,
53
+ "max_window_layers": 36,
54
+ "model_type": "qwen3",
55
+ "num_attention_heads": 32,
56
+ "num_hidden_layers": 36,
57
+ "num_key_value_heads": 8,
58
+ "rms_norm_eps": 1e-06,
59
+ "rope_scaling": null,
60
+ "rope_theta": 1000000,
61
+ "sliding_window": null,
62
+ "tie_word_embeddings": true,
63
+ "torch_dtype": "float32",
64
+ "use_cache": true,
65
+ "use_sliding_window": false,
66
+ "vocab_size": 152000
67
+ },
68
+ "tie_word_embeddings": true,
69
+ "torch_dtype": "float32",
70
+ "transformers_version": "4.52.0",
71
+ "use_image_newline_parameter": true,
72
+ "video_token_index": 151670,
73
+ "vision_aspect_ratio": "anyres",
74
+ "vision_config": {
75
+ "auto_map": {
76
+ "AutoConfig": "configuration_r.RConfig"
77
+ },
78
+ "attention_dropout": 0.0,
79
+ "hidden_act": "gelu_pytorch_tanh",
80
+ "hidden_size": 1152,
81
+ "image_size": 384,
82
+ "intermediate_size": 4304,
83
+ "layer_norm_eps": 1e-06,
84
+ "model_type": "siglip_vision_model",
85
+ "num_attention_heads": 16,
86
+ "num_channels": 3,
87
+ "num_hidden_layers": 26,
88
+ "patch_size": 14,
89
+ "torch_dtype": "float32",
90
+ "vision_use_head": false
91
+ },
92
+ "vision_feature_layer": -1,
93
+ "vision_feature_select_strategy": "full"
94
+ }
configuration_r.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from transformers.configuration_utils import PretrainedConfig
17
+ from transformers.utils import (
18
+ logging,
19
+ )
20
+ from transformers.models.auto import CONFIG_MAPPING, AutoConfig
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class RConfig(PretrainedConfig):
27
+ model_type = "R"
28
+ attribute_map = {
29
+ "image_token_id": "image_token_index",
30
+ "video_token_id": "video_token_index",
31
+ }
32
+ sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig}
33
+
34
+ def __init__(
35
+ self,
36
+ vision_config=None,
37
+ text_config=None,
38
+ image_token_index=151646,
39
+ video_token_index=151647,
40
+ projector_hidden_act="gelu",
41
+ vision_feature_select_strategy="full",
42
+ vision_feature_layer=-1,
43
+ vision_aspect_ratio= "anyres",
44
+ image_grid_pinpoints=None,
45
+ tie_word_embeddings=False,
46
+ multimodal_projector_bias=True,
47
+ max_position_embeddings=32768,
48
+ **kwargs,
49
+ ):
50
+ self.image_token_index = image_token_index
51
+ self.video_token_index = video_token_index
52
+ self.projector_hidden_act = projector_hidden_act
53
+ self.multimodal_projector_bias = multimodal_projector_bias
54
+
55
+ if vision_feature_select_strategy not in ["default", "full"]:
56
+ raise ValueError(
57
+ "vision_feature_select_strategy should be one of 'default', 'full'."
58
+ f"Got: {vision_feature_select_strategy}"
59
+ )
60
+
61
+ self.vision_feature_select_strategy = vision_feature_select_strategy
62
+ self.vision_feature_layer = vision_feature_layer
63
+ self.vision_aspect_ratio = vision_aspect_ratio
64
+
65
+ image_grid_pinpoints = (
66
+ image_grid_pinpoints
67
+ if image_grid_pinpoints is not None
68
+ else [[384, 768], [768, 384], [768, 768], [1152, 384], [384, 1152]]
69
+ )
70
+ self.image_grid_pinpoints = image_grid_pinpoints
71
+
72
+ if isinstance(vision_config, dict):
73
+ vision_config["model_type"] = (
74
+ vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model"
75
+ )
76
+ vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
77
+ elif vision_config is None:
78
+ vision_config = CONFIG_MAPPING["siglip_vision_model"](
79
+ hidden_size=1152,
80
+ intermediate_size=4304,
81
+ patch_size=14,
82
+ image_size=384,
83
+ num_hidden_layers=26,
84
+ num_attention_heads=14,
85
+ vision_use_head=False,
86
+ )
87
+
88
+ self.vision_config = vision_config
89
+
90
+ if isinstance(text_config, dict):
91
+ text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen2"
92
+ text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
93
+ elif text_config is None:
94
+ text_config = CONFIG_MAPPING["qwen2"]()
95
+
96
+ self.text_config = text_config
97
+
98
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
99
+
100
+
101
+ __all__ = ["RConfig"]
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151645,
5
+ "transformers_version": "4.54.1"
6
+ }
image_processing_r.py ADDED
@@ -0,0 +1,499 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from collections.abc import Iterable
17
+ from typing import Optional, Union
18
+
19
+ import numpy as np
20
+
21
+ from transformers.image_processing_utils import (
22
+ BaseImageProcessor,
23
+ BatchFeature,
24
+ get_patch_output_size,
25
+ get_size_dict,
26
+ select_best_resolution,
27
+ )
28
+ from transformers.image_transforms import (
29
+ PaddingMode,
30
+ convert_to_rgb,
31
+ pad,
32
+ resize,
33
+ to_channel_dimension_format,
34
+ )
35
+ from transformers.image_utils import (
36
+ OPENAI_CLIP_MEAN,
37
+ OPENAI_CLIP_STD,
38
+ ChannelDimension,
39
+ ImageInput,
40
+ PILImageResampling,
41
+ get_image_size,
42
+ infer_channel_dimension_format,
43
+ is_scaled_image,
44
+ make_flat_list_of_images,
45
+ to_numpy_array,
46
+ valid_images,
47
+ validate_preprocess_arguments,
48
+ )
49
+ from transformers.utils import TensorType, is_vision_available, logging
50
+
51
+
52
+ logger = logging.get_logger(__name__)
53
+
54
+
55
+ if is_vision_available():
56
+ from PIL import Image
57
+
58
+
59
+ # Copied from transformers.models.llava_next.image_processing_llava_next.divide_to_patches
60
+ def divide_to_patches(image: np.array, patch_size: int, input_data_format) -> list[np.array]:
61
+ """
62
+ Divides an image into patches of a specified size.
63
+
64
+ Args:
65
+ image (`np.array`):
66
+ The input image.
67
+ patch_size (`int`):
68
+ The size of each patch.
69
+ input_data_format (`ChannelDimension` or `str`):
70
+ The channel dimension format of the input image.
71
+
72
+ Returns:
73
+ list: A list of np.array representing the patches.
74
+ """
75
+ patches = []
76
+ height, width = get_image_size(image, channel_dim=input_data_format)
77
+ for i in range(0, height, patch_size):
78
+ for j in range(0, width, patch_size):
79
+ if input_data_format == ChannelDimension.LAST:
80
+ patch = image[i : i + patch_size, j : j + patch_size]
81
+ else:
82
+ patch = image[:, i : i + patch_size, j : j + patch_size]
83
+ patches.append(patch)
84
+
85
+ return patches
86
+
87
+
88
+ # Copied from transformers.models.llava_next.image_processing_llava_next.expand_to_square
89
+ def expand_to_square(image: np.array, background_color, input_data_format) -> np.array:
90
+ """
91
+ Expands an image to a square by adding a background color.
92
+ """
93
+
94
+ height, width = get_image_size(image, channel_dim=input_data_format)
95
+ if width == height:
96
+ return image
97
+ elif width > height:
98
+ result = np.ones((width, width, image.shape[2]), dtype=image.dtype) * background_color
99
+ result[(width - height) // 2 : (width - height) // 2 + height, :] = image
100
+ return result
101
+ else:
102
+ result = np.ones((height, height, image.shape[2]), dtype=image.dtype) * background_color
103
+ result[:, (height - width) // 2 : (height - width) // 2 + width] = image
104
+ return result
105
+
106
+
107
+ class RImageProcessor(BaseImageProcessor):
108
+ model_input_names = ["pixel_values_videos"]
109
+
110
+ def __init__(
111
+ self,
112
+ do_resize: bool = True,
113
+ size: Optional[dict[str, int]] = None,
114
+ image_grid_pinpoints: Optional[list] = None,
115
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
116
+ do_rescale: bool = True,
117
+ rescale_factor: Union[int, float] = 1 / 255,
118
+ do_normalize: bool = True,
119
+ image_mean: Optional[Union[float, list[float]]] = None,
120
+ image_std: Optional[Union[float, list[float]]] = None,
121
+ do_pad: Optional[bool] = True,
122
+ do_convert_rgb: bool = True,
123
+ **kwargs,
124
+ ) -> None:
125
+ super().__init__(**kwargs)
126
+ size = size if size is not None else {"height": 384, "width": 384}
127
+ size = get_size_dict(size, default_to_square=False)
128
+ image_grid_pinpoints = (
129
+ image_grid_pinpoints
130
+ if image_grid_pinpoints is not None
131
+ else [[384, 768], [768, 384], [768, 768], [1152, 384], [384, 1152]]
132
+ )
133
+ self.do_resize = do_resize
134
+ self.size = size
135
+ self.image_grid_pinpoints = image_grid_pinpoints
136
+ self.resample = resample
137
+ self.do_rescale = do_rescale
138
+ self.rescale_factor = rescale_factor
139
+ self.do_normalize = do_normalize
140
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
141
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
142
+ self.do_pad = do_pad
143
+ self.do_convert_rgb = do_convert_rgb
144
+
145
+ # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor.pad
146
+ def pad(
147
+ self,
148
+ image: np.ndarray,
149
+ padding: Union[int, tuple[int, int], Iterable[tuple[int, int]]],
150
+ mode: PaddingMode = PaddingMode.CONSTANT,
151
+ constant_values: Union[float, Iterable[float]] = 0.0,
152
+ data_format: Optional[Union[str, ChannelDimension]] = None,
153
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
154
+ ) -> np.ndarray:
155
+
156
+ # call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim
157
+ if isinstance(padding, int) or len(padding) != 4:
158
+ return pad(image, padding, mode, constant_values, data_format, input_data_format)
159
+
160
+ if input_data_format is None:
161
+ input_data_format = infer_channel_dimension_format(image)
162
+ if mode == PaddingMode.CONSTANT:
163
+ image = np.pad(image, padding, mode="constant", constant_values=constant_values)
164
+ elif mode == PaddingMode.REFLECT:
165
+ image = np.pad(image, padding, mode="reflect")
166
+ elif mode == PaddingMode.REPLICATE:
167
+ image = np.pad(image, padding, mode="edge")
168
+ elif mode == PaddingMode.SYMMETRIC:
169
+ image = np.pad(image, padding, mode="symmetric")
170
+ else:
171
+ raise ValueError(f"Invalid padding mode: {mode}")
172
+ image = (
173
+ to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
174
+ )
175
+ return image
176
+
177
+ # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._resize_for_patching
178
+ def _resize_for_patching(
179
+ self, image: np.array, target_resolution: tuple, resample, input_data_format: ChannelDimension
180
+ ) -> np.array:
181
+ new_height, new_width = get_patch_output_size(image, target_resolution, input_data_format)
182
+
183
+ # Resize the image
184
+ resized_image = resize(image, (new_height, new_width), resample=resample, input_data_format=input_data_format)
185
+
186
+ return resized_image
187
+
188
+ # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._get_padding_size
189
+ def _get_padding_size(self, original_resolution: tuple, target_resolution: tuple):
190
+ original_height, original_width = original_resolution
191
+ target_height, target_width = target_resolution
192
+ paste_x, r_x = divmod(target_width - original_width, 2)
193
+ paste_y, r_y = divmod(target_height - original_height, 2)
194
+ return (paste_y, paste_y + r_y), (paste_x, paste_x + r_x)
195
+
196
+ # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._pad_for_patching
197
+ def _pad_for_patching(
198
+ self, image: np.array, target_resolution: tuple, input_data_format: ChannelDimension
199
+ ) -> np.array:
200
+ """
201
+ Pad an image to a target resolution while maintaining aspect ratio.
202
+ """
203
+ new_resolution = get_patch_output_size(image, target_resolution, input_data_format)
204
+ padding = self._get_padding_size(new_resolution, target_resolution)
205
+
206
+ padded_image = self.pad(image, padding=padding)
207
+
208
+ return padded_image
209
+
210
+ # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor.get_image_patches
211
+ def get_image_patches(
212
+ self,
213
+ image: np.array,
214
+ grid_pinpoints,
215
+ size: tuple,
216
+ patch_size: int,
217
+ resample: PILImageResampling,
218
+ data_format: ChannelDimension,
219
+ input_data_format: ChannelDimension,
220
+ ) -> list[np.array]:
221
+ if not isinstance(grid_pinpoints, list):
222
+ raise TypeError("grid_pinpoints must be a list of possible resolutions.")
223
+
224
+ possible_resolutions = grid_pinpoints
225
+
226
+ image_size = get_image_size(image, channel_dim=input_data_format)
227
+ best_resolution = select_best_resolution(image_size, possible_resolutions)
228
+ resized_image = self._resize_for_patching(
229
+ image, best_resolution, resample=resample, input_data_format=input_data_format
230
+ )
231
+ padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=input_data_format)
232
+
233
+ patches = divide_to_patches(padded_image, patch_size=patch_size, input_data_format=input_data_format)
234
+
235
+ # make sure that all patches are in the input data format
236
+ patches = [
237
+ to_channel_dimension_format(patch, channel_dim=data_format, input_channel_dim=input_data_format)
238
+ for patch in patches
239
+ ]
240
+
241
+ resized_original_image = resize(
242
+ image,
243
+ size=size,
244
+ resample=resample,
245
+ data_format=data_format,
246
+ input_data_format=input_data_format,
247
+ )
248
+
249
+ image_patches = [resized_original_image] + patches
250
+
251
+ return image_patches
252
+
253
+ # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._pad_for_batching
254
+ def _pad_for_batching(
255
+ self,
256
+ pixel_values: list[np.ndarray],
257
+ data_format: Optional[Union[str, ChannelDimension]] = None,
258
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
259
+ ):
260
+ max_patch = max(len(x) for x in pixel_values)
261
+ pixel_values = [
262
+ self.pad(
263
+ image,
264
+ padding=((0, max_patch - image.shape[0]), (0, 0), (0, 0), (0, 0)),
265
+ data_format=data_format,
266
+ input_data_format=input_data_format,
267
+ )
268
+ for image in pixel_values
269
+ ]
270
+
271
+ return pixel_values
272
+
273
+ # Copied from transformers.models.llava.image_processing_llava.LlavaImageProcessor.pad_to_square
274
+ def pad_to_square(
275
+ self,
276
+ image: np.ndarray,
277
+ background_color: Union[int, tuple[int, int, int]] = 0,
278
+ data_format: Optional[Union[str, ChannelDimension]] = None,
279
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
280
+ ) -> np.array:
281
+ height, width = get_image_size(image, input_data_format)
282
+ num_channels = image.shape[0] if input_data_format == ChannelDimension.FIRST else image.shape[-1]
283
+
284
+ if height == width:
285
+ image = (
286
+ to_channel_dimension_format(image, data_format, input_data_format)
287
+ if data_format is not None
288
+ else image
289
+ )
290
+ return image
291
+
292
+ max_dim = max(height, width)
293
+
294
+ # Ensure background_color is the correct shape
295
+ if isinstance(background_color, int):
296
+ background_color = [background_color]
297
+ elif len(background_color) != num_channels:
298
+ raise ValueError(
299
+ f"background_color must have no more than {num_channels} elements to match the number of channels"
300
+ )
301
+
302
+ if input_data_format == ChannelDimension.FIRST:
303
+ result = np.zeros((num_channels, max_dim, max_dim), dtype=image.dtype)
304
+ for i, color in enumerate(background_color):
305
+ result[i, :, :] = color
306
+ if width > height:
307
+ start = (max_dim - height) // 2
308
+ result[:, start : start + height, :] = image
309
+ else:
310
+ start = (max_dim - width) // 2
311
+ result[:, :, start : start + width] = image
312
+ else:
313
+ result = np.zeros((max_dim, max_dim, num_channels), dtype=image.dtype)
314
+ for i, color in enumerate(background_color):
315
+ result[:, :, i] = color
316
+ if width > height:
317
+ start = (max_dim - height) // 2
318
+ result[start : start + height, :, :] = image
319
+ else:
320
+ start = (max_dim - width) // 2
321
+ result[:, start : start + width, :] = image
322
+
323
+ image = (
324
+ to_channel_dimension_format(result, data_format, input_data_format) if data_format is not None else result
325
+ )
326
+ return image
327
+
328
+ def _preprocess(
329
+ self,
330
+ images: ImageInput,
331
+ do_resize: Optional[bool] = None,
332
+ size: Optional[dict[str, int]] = None,
333
+ resample: PILImageResampling = None,
334
+ do_rescale: Optional[bool] = None,
335
+ rescale_factor: Optional[float] = None,
336
+ do_normalize: Optional[bool] = None,
337
+ image_mean: Optional[Union[float, list[float]]] = None,
338
+ image_std: Optional[Union[float, list[float]]] = None,
339
+ do_convert_rgb: Optional[bool] = None,
340
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
341
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
342
+ ) -> Image.Image:
343
+ if do_resize:
344
+ images = [
345
+ resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
346
+ for image in images
347
+ ]
348
+
349
+ if do_rescale:
350
+ images = [
351
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
352
+ for image in images
353
+ ]
354
+
355
+ if do_normalize:
356
+ images = [
357
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
358
+ for image in images
359
+ ]
360
+
361
+ images = [
362
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
363
+ ]
364
+
365
+ return images
366
+
367
+ def preprocess(
368
+ self,
369
+ images: ImageInput,
370
+ do_resize: Optional[bool] = None,
371
+ size: Optional[dict[str, int]] = None,
372
+ image_grid_pinpoints: Optional[list] = None,
373
+ resample: PILImageResampling = None,
374
+ do_rescale: Optional[bool] = None,
375
+ rescale_factor: Optional[float] = None,
376
+ do_normalize: Optional[bool] = None,
377
+ image_mean: Optional[Union[float, list[float]]] = None,
378
+ image_std: Optional[Union[float, list[float]]] = None,
379
+ do_pad: Optional[bool] = None,
380
+ do_convert_rgb: Optional[bool] = None,
381
+ return_tensors: Optional[Union[str, TensorType]] = None,
382
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
383
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
384
+ ):
385
+ do_resize = do_resize if do_resize is not None else self.do_resize
386
+ size = size if size is not None else self.size
387
+ size = get_size_dict(size, default_to_square=False)
388
+ image_grid_pinpoints = image_grid_pinpoints if image_grid_pinpoints is not None else self.image_grid_pinpoints
389
+ resample = resample if resample is not None else self.resample
390
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
391
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
392
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
393
+ image_mean = image_mean if image_mean is not None else self.image_mean
394
+ image_std = image_std if image_std is not None else self.image_std
395
+ do_pad = do_pad if do_pad is not None else self.do_pad
396
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
397
+
398
+ if isinstance(images, (tuple, list)) and isinstance(images[0], (tuple, list)):
399
+ # if the first element is a list, we assume that all elements are lists
400
+ batch_num_images = [len(x) for x in images]
401
+ elif isinstance(images, (tuple, list)):
402
+ # treat this as a single-image case for backward compatibility
403
+ batch_num_images = [1] * len(images)
404
+ else:
405
+ batch_num_images = [1]
406
+ # only single image patching is supported
407
+ need_patching = [n == 1 for n in batch_num_images for _ in range(n)]
408
+
409
+ images = make_flat_list_of_images(images)
410
+
411
+ if not valid_images(images):
412
+ raise ValueError(
413
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
414
+ "torch.Tensor, tf.Tensor or jax.ndarray."
415
+ )
416
+
417
+ validate_preprocess_arguments(
418
+ do_rescale=do_rescale,
419
+ rescale_factor=rescale_factor,
420
+ do_normalize=do_normalize,
421
+ image_mean=image_mean,
422
+ image_std=image_std,
423
+ do_resize=do_resize,
424
+ size=size,
425
+ resample=resample,
426
+ )
427
+
428
+ if do_convert_rgb:
429
+ images = [convert_to_rgb(image) for image in images]
430
+
431
+ # All transformations expect numpy arrays.
432
+ images = [to_numpy_array(image) for image in images]
433
+
434
+ if do_rescale and is_scaled_image(images[0]):
435
+ logger.warning_once(
436
+ "It looks like you are trying to rescale already rescaled images. If the input"
437
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
438
+ )
439
+
440
+ if input_data_format is None:
441
+ # We assume that all images have the same channel dimension format.
442
+ input_data_format = infer_channel_dimension_format(images[0])
443
+
444
+ size_tuple = (
445
+ (size["height"], size["width"])
446
+ if "height" in size and "width" in size
447
+ else (size["shortest_edge"], size["shortest_edge"])
448
+ )
449
+
450
+ new_images = []
451
+ image_sizes = [get_image_size(image, channel_dim=input_data_format) for image in images]
452
+ for i, image in enumerate(images):
453
+ if need_patching[i]:
454
+ # convert image into a list of patches
455
+ # we intentionally use the same data format as the input data format
456
+ image_patches = self.get_image_patches(
457
+ image,
458
+ image_grid_pinpoints,
459
+ size=size_tuple,
460
+ patch_size=size_tuple[0],
461
+ resample=resample,
462
+ data_format=input_data_format,
463
+ input_data_format=input_data_format,
464
+ )
465
+ else:
466
+ padded_image = self.pad_to_square(
467
+ image=image,
468
+ background_color=tuple(int(x * 255) for x in self.image_mean),
469
+ input_data_format=input_data_format,
470
+ )
471
+ image_patches = [padded_image]
472
+
473
+ # preprocess patches
474
+ pixel_values = self._preprocess(
475
+ image_patches,
476
+ do_resize=do_resize,
477
+ size=size_tuple,
478
+ resample=resample,
479
+ do_rescale=do_rescale,
480
+ rescale_factor=rescale_factor,
481
+ do_normalize=do_normalize,
482
+ image_mean=image_mean,
483
+ image_std=image_std,
484
+ data_format=data_format,
485
+ input_data_format=input_data_format,
486
+ )
487
+ pixel_values = np.array(pixel_values)
488
+ new_images.append(pixel_values)
489
+
490
+ if do_pad:
491
+ processed_images = self._pad_for_batching(new_images)
492
+
493
+ return BatchFeature(
494
+ data={"pixel_values": processed_images, "image_sizes": image_sizes, "batch_num_images": batch_num_images},
495
+ tensor_type=return_tensors,
496
+ )
497
+
498
+
499
+ __all__ = ["RImageProcessor"]
image_processing_r_fast.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ from typing import Optional, Union
16
+
17
+ import torch
18
+
19
+ from transformers.image_processing_utils import BatchFeature, get_patch_output_size, select_best_resolution
20
+ from transformers.image_processing_utils_fast import (
21
+ BaseImageProcessorFast,
22
+ DefaultFastImageProcessorKwargs,
23
+ divide_to_patches,
24
+ group_images_by_shape,
25
+ reorder_images,
26
+ )
27
+ from transformers.image_utils import (
28
+ OPENAI_CLIP_MEAN,
29
+ OPENAI_CLIP_STD,
30
+ ChannelDimension,
31
+ ImageInput,
32
+ PILImageResampling,
33
+ SizeDict,
34
+ get_image_size,
35
+ make_flat_list_of_images,
36
+ )
37
+ from transformers.processing_utils import Unpack
38
+ from transformers.utils import TensorType, auto_docstring, is_torchvision_v2_available
39
+
40
+
41
+ if is_torchvision_v2_available():
42
+ from torchvision.transforms.v2 import functional as F
43
+ else:
44
+ from torchvision.transforms import functional as F
45
+
46
+
47
+ class RFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
48
+ image_grid_pinpoints: Optional[list[list[int]]]
49
+ do_pad: Optional[bool]
50
+
51
+
52
+ @auto_docstring
53
+ class RImageProcessorFast(BaseImageProcessorFast):
54
+ resample = PILImageResampling.BICUBIC
55
+ image_mean = OPENAI_CLIP_MEAN
56
+ image_std = OPENAI_CLIP_STD
57
+ size = {"height": 384, "width": 384}
58
+ default_to_square = False
59
+ crop_size = None
60
+ do_resize = True
61
+ do_center_crop = None
62
+ do_rescale = True
63
+ do_normalize = True
64
+ do_convert_rgb = True
65
+ do_pad = True
66
+ image_grid_pinpoints = [[384,768],[768,384],[768,768],[1152,384],[384,1152]],
67
+ valid_kwargs = RFastImageProcessorKwargs
68
+ model_input_names = ["pixel_values_videos"]
69
+
70
+ def __init__(self, **kwargs: Unpack[RFastImageProcessorKwargs]):
71
+ super().__init__(**kwargs)
72
+
73
+ @auto_docstring
74
+ def preprocess(
75
+ self, images: ImageInput, **kwargs: Unpack[RFastImageProcessorKwargs]
76
+ ) -> BatchFeature:
77
+ if isinstance(images, (tuple, list)) and isinstance(images[0], (tuple, list)):
78
+ # if the first element is a list, we assume that all elements are lists
79
+ batch_num_images = [len(x) for x in images]
80
+ elif isinstance(images, (tuple, list)):
81
+ # treat this as a single-image case for backward compatibility
82
+ batch_num_images = [1] * len(images)
83
+ else:
84
+ batch_num_images = [1]
85
+ kwargs["batch_num_images"] = batch_num_images
86
+ return super().preprocess(images, **kwargs)
87
+
88
+ def _prepare_images_structure(
89
+ self,
90
+ images: ImageInput,
91
+ ) -> ImageInput:
92
+ return make_flat_list_of_images(images)
93
+
94
+ def _resize_for_patching(
95
+ self,
96
+ image: "torch.Tensor",
97
+ target_resolution: tuple,
98
+ interpolation: "F.InterpolationMode",
99
+ input_data_format: ChannelDimension,
100
+ ) -> "torch.Tensor":
101
+
102
+ new_height, new_width = get_patch_output_size(image, target_resolution, input_data_format)
103
+
104
+ # Resize the image
105
+ resized_image = F.resize(image, (new_height, new_width), interpolation=interpolation)
106
+
107
+ return resized_image
108
+
109
+ def _get_padding_size(self, original_resolution: tuple, target_resolution: tuple):
110
+ original_height, original_width = original_resolution
111
+ target_height, target_width = target_resolution
112
+ paste_x, r_x = divmod(target_width - original_width, 2)
113
+ paste_y, r_y = divmod(target_height - original_height, 2)
114
+ return [paste_x, paste_y, paste_x + r_x, paste_y + r_y]
115
+
116
+ def _pad_for_patching(
117
+ self, image: "torch.Tensor", target_resolution: tuple, input_data_format: ChannelDimension
118
+ ) -> "torch.Tensor":
119
+ """
120
+ Pad an image to a target resolution while maintaining aspect ratio.
121
+ """
122
+ new_resolution = get_patch_output_size(image, target_resolution, input_data_format)
123
+ padding = self._get_padding_size(new_resolution, target_resolution)
124
+
125
+ padded_image = F.pad(image, padding=padding)
126
+
127
+ return padded_image
128
+
129
+ def _get_image_patches(
130
+ self,
131
+ image: "torch.Tensor",
132
+ grid_pinpoints,
133
+ size: tuple,
134
+ patch_size: int,
135
+ interpolation: "F.InterpolationMode",
136
+ ) -> list["torch.Tensor"]:
137
+ """
138
+ Process an image with variable resolutions by dividing it into patches.
139
+
140
+ Args:
141
+ image ("torch.Tensor"):
142
+ The input image to be processed.
143
+ grid_pinpoints (List):
144
+ A string representation of a list of possible resolutions.
145
+ size (`tuple`):
146
+ Size to resize the original image to.
147
+ patch_size (`int`):
148
+ Size of the patches to divide the image into.
149
+ interpolation (`"InterpolationMode"`):
150
+ Resampling filter to use if resizing the image.
151
+
152
+ Returns:
153
+ list["torch.Tensor"]: A list of NumPy arrays containing the processed image patches.
154
+ """
155
+ if not isinstance(grid_pinpoints, list):
156
+ raise TypeError("grid_pinpoints must be a list of possible resolutions.")
157
+
158
+ possible_resolutions = grid_pinpoints
159
+
160
+ image_size = get_image_size(image, channel_dim=ChannelDimension.FIRST)
161
+ best_resolution = select_best_resolution(image_size, possible_resolutions)
162
+ resized_image = self._resize_for_patching(
163
+ image, best_resolution, interpolation=interpolation, input_data_format=ChannelDimension.FIRST
164
+ )
165
+ padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=ChannelDimension.FIRST)
166
+ patches = divide_to_patches(padded_image, patch_size=patch_size)
167
+ resized_original_image = F.resize(image, size=size, interpolation=interpolation)
168
+
169
+ image_patches = [resized_original_image] + patches
170
+
171
+ return image_patches
172
+
173
+ def _pad_for_batching(
174
+ self,
175
+ pixel_values: list["torch.Tensor"],
176
+ ) -> list["torch.Tensor"]:
177
+ """
178
+ Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
179
+
180
+ Args:
181
+ pixel_values (`list[torch.Tensor]`):
182
+ An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
183
+
184
+ Returns:
185
+ list[`torch.Tensor`]: The padded images.
186
+ """
187
+ max_patch = max(len(x) for x in pixel_values)
188
+ pixel_values = [
189
+ torch.nn.functional.pad(image, pad=[0, 0, 0, 0, 0, 0, 0, max_patch - image.shape[0]])
190
+ for image in pixel_values
191
+ ]
192
+
193
+ return pixel_values
194
+
195
+ def _preprocess(
196
+ self,
197
+ images: list["torch.Tensor"],
198
+ do_resize: bool,
199
+ size: SizeDict,
200
+ image_grid_pinpoints: list[list[int]],
201
+ interpolation: Optional["F.InterpolationMode"],
202
+ do_center_crop: bool,
203
+ crop_size: SizeDict,
204
+ do_rescale: bool,
205
+ rescale_factor: float,
206
+ do_normalize: bool,
207
+ image_mean: Optional[Union[float, list[float]]],
208
+ image_std: Optional[Union[float, list[float]]],
209
+ do_pad: bool,
210
+ batch_num_images: list[int],
211
+ return_tensors: Optional[Union[str, TensorType]],
212
+ ) -> BatchFeature:
213
+ processed_images = []
214
+ image_sizes = []
215
+
216
+ # only single image patching is supported
217
+ need_patching = [n == 1 for n in batch_num_images for _ in range(n)]
218
+
219
+ # Determine the size tuple
220
+ if size and size.height and size.width:
221
+ size_tuple = (size.height, size.width)
222
+ else:
223
+ size_tuple = (size.shortest_edge, size.shortest_edge)
224
+
225
+ # Determine the patch size
226
+ if crop_size and crop_size.height:
227
+ patch_size = crop_size.height
228
+ elif size and size.height:
229
+ patch_size = size.height
230
+ else:
231
+ patch_size = size.shortest_edge
232
+
233
+ for i, image in enumerate(images):
234
+ if need_patching[i]:
235
+ image_patches = self._get_image_patches(
236
+ image,
237
+ image_grid_pinpoints,
238
+ size=size_tuple,
239
+ patch_size=patch_size,
240
+ interpolation=interpolation,
241
+ )
242
+ else:
243
+ padded_image = self.pad_to_square(
244
+ images=image, background_color=tuple(int(x * 255) for x in self.image_mean)
245
+ )
246
+ image_patches = [padded_image]
247
+
248
+ # Group images by size for batched processing
249
+ processed_image_patches_grouped = {}
250
+ grouped_image_patches, grouped_image_patches_index = group_images_by_shape(image_patches)
251
+ for shape, stacked_image_patches in grouped_image_patches.items():
252
+ if do_resize:
253
+ stacked_image_patches = self.resize(
254
+ image=stacked_image_patches,
255
+ size=size,
256
+ interpolation=interpolation,
257
+ )
258
+ if do_center_crop:
259
+ stacked_image_patches = self.center_crop(stacked_image_patches, crop_size)
260
+ # Fused rescale and normalize
261
+ stacked_image_patches = self.rescale_and_normalize(
262
+ stacked_image_patches, do_rescale, rescale_factor, do_normalize, image_mean, image_std
263
+ )
264
+ processed_image_patches_grouped[shape] = stacked_image_patches
265
+ processed_image_patches = reorder_images(processed_image_patches_grouped, grouped_image_patches_index)
266
+ processed_image_patches = (
267
+ torch.stack(processed_image_patches, dim=0) if return_tensors else processed_image_patches
268
+ )
269
+ processed_images.append(processed_image_patches)
270
+ image_sizes.append(get_image_size(image, ChannelDimension.FIRST))
271
+
272
+ if do_pad:
273
+ processed_images = self._pad_for_batching(processed_images)
274
+ processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images
275
+ return BatchFeature(
276
+ data={"pixel_values": processed_images, "image_sizes": image_sizes, "batch_num_images": batch_num_images},
277
+ tensor_type=return_tensors,
278
+ )
279
+
280
+ # Copied from transformers.models.llava.image_processing_llava_fast.LlavaImageProcessorFast.pad_to_square
281
+ def pad_to_square(
282
+ self,
283
+ images: "torch.Tensor",
284
+ background_color: Union[int, tuple[int, int, int]] = 0,
285
+ ) -> "torch.Tensor":
286
+ """
287
+ Pads an image to a square based on the longest edge.
288
+
289
+ Args:
290
+ images (`np.ndarray`):
291
+ The images to pad.
292
+ background_color (`int` or `tuple[int, int, int]`, *optional*, defaults to 0):
293
+ The color to use for the padding. Can be an integer for single channel or a
294
+ tuple of integers representing for multi-channel images. If passed as integer
295
+ in mutli-channel mode, it will default to `0` in subsequent channels.
296
+ Returns:
297
+ `torch.Tensor`: The padded images.
298
+ """
299
+ height, width = get_image_size(images, ChannelDimension.FIRST)
300
+
301
+ if height == width:
302
+ return images
303
+
304
+ num_channels = images.shape[1] if len(images.shape) == 4 else images.shape[0]
305
+ if isinstance(background_color, int):
306
+ background_color = [background_color] + [0] * (num_channels - 1)
307
+ elif len(background_color) != num_channels:
308
+ raise ValueError(
309
+ f"background_color must have no more than {num_channels} elements to match the number of channels"
310
+ )
311
+
312
+ max_dim = max(height, width)
313
+ paste_x_left = (max_dim - width) // 2
314
+ paste_y_left = (max_dim - height) // 2
315
+ paste_x_right = max_dim - width - paste_x_left
316
+ paste_y_right = max_dim - height - paste_y_left
317
+ padded_images = F.pad(
318
+ images, padding=[paste_x_left, paste_y_left, paste_x_right, paste_y_right], fill=background_color
319
+ )
320
+
321
+ return padded_images
322
+
323
+
324
+ __all__ = ["RImageProcessorFast"]
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cbe4838c6bf13407ca264c3f05a7b5773a54e190d819612c9c9082040dcec89
3
+ size 4588680176
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6e36a8076b61866ef7fa29d5bf7418fc81705eaa59ef18982bdba846a96bae1
3
+ size 4984489744
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdb79aaec58bb87ba821cc6fedfe6affb9158be17303ad6d1254d2535f6fe82f
3
+ size 64968216
model.safetensors.index.json ADDED
@@ -0,0 +1,834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 9638024768
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00003.safetensors",
7
+ "model.image_newline": "model-00002-of-00003.safetensors",
8
+ "model.language_model.embed_tokens.weight": "model-00002-of-00003.safetensors",
9
+ "model.language_model.layers.0.input_layernorm.weight": "model-00002-of-00003.safetensors",
10
+ "model.language_model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.language_model.layers.0.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
12
+ "model.language_model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
13
+ "model.language_model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
14
+ "model.language_model.layers.0.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
15
+ "model.language_model.layers.0.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
16
+ "model.language_model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.language_model.layers.0.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
18
+ "model.language_model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.language_model.layers.0.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
20
+ "model.language_model.layers.1.input_layernorm.weight": "model-00002-of-00003.safetensors",
21
+ "model.language_model.layers.1.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
22
+ "model.language_model.layers.1.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
23
+ "model.language_model.layers.1.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
24
+ "model.language_model.layers.1.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
25
+ "model.language_model.layers.1.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
26
+ "model.language_model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
27
+ "model.language_model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.language_model.layers.1.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
29
+ "model.language_model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.language_model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
31
+ "model.language_model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
32
+ "model.language_model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
33
+ "model.language_model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
34
+ "model.language_model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
35
+ "model.language_model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.language_model.layers.10.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
37
+ "model.language_model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.language_model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
39
+ "model.language_model.layers.10.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
40
+ "model.language_model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.language_model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.language_model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
43
+ "model.language_model.layers.11.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.language_model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
45
+ "model.language_model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.language_model.layers.11.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
47
+ "model.language_model.layers.11.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
48
+ "model.language_model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
49
+ "model.language_model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
50
+ "model.language_model.layers.11.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
51
+ "model.language_model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
52
+ "model.language_model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
53
+ "model.language_model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.language_model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.language_model.layers.12.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
56
+ "model.language_model.layers.12.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
57
+ "model.language_model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.language_model.layers.12.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
59
+ "model.language_model.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
60
+ "model.language_model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.language_model.layers.12.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
62
+ "model.language_model.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
63
+ "model.language_model.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
64
+ "model.language_model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
65
+ "model.language_model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.language_model.layers.13.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
67
+ "model.language_model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.language_model.layers.13.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
69
+ "model.language_model.layers.13.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
70
+ "model.language_model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.language_model.layers.13.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
72
+ "model.language_model.layers.13.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
73
+ "model.language_model.layers.13.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
74
+ "model.language_model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.language_model.layers.14.input_layernorm.weight": "model-00001-of-00003.safetensors",
76
+ "model.language_model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.language_model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.language_model.layers.14.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
79
+ "model.language_model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
80
+ "model.language_model.layers.14.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
81
+ "model.language_model.layers.14.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
82
+ "model.language_model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.language_model.layers.14.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
84
+ "model.language_model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
85
+ "model.language_model.layers.14.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
86
+ "model.language_model.layers.15.input_layernorm.weight": "model-00001-of-00003.safetensors",
87
+ "model.language_model.layers.15.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
88
+ "model.language_model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.language_model.layers.15.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
90
+ "model.language_model.layers.15.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
91
+ "model.language_model.layers.15.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
92
+ "model.language_model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.language_model.layers.15.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
94
+ "model.language_model.layers.15.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
95
+ "model.language_model.layers.15.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
96
+ "model.language_model.layers.15.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
97
+ "model.language_model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
98
+ "model.language_model.layers.16.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
99
+ "model.language_model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.language_model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.language_model.layers.16.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
102
+ "model.language_model.layers.16.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
103
+ "model.language_model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.language_model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.language_model.layers.16.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
106
+ "model.language_model.layers.16.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
107
+ "model.language_model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
108
+ "model.language_model.layers.17.input_layernorm.weight": "model-00001-of-00003.safetensors",
109
+ "model.language_model.layers.17.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
110
+ "model.language_model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.language_model.layers.17.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
112
+ "model.language_model.layers.17.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
113
+ "model.language_model.layers.17.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
114
+ "model.language_model.layers.17.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
115
+ "model.language_model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.language_model.layers.17.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
117
+ "model.language_model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
118
+ "model.language_model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
119
+ "model.language_model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
120
+ "model.language_model.layers.18.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
121
+ "model.language_model.layers.18.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.language_model.layers.18.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.language_model.layers.18.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
124
+ "model.language_model.layers.18.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
125
+ "model.language_model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
126
+ "model.language_model.layers.18.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
127
+ "model.language_model.layers.18.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
128
+ "model.language_model.layers.18.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
129
+ "model.language_model.layers.18.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
130
+ "model.language_model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
131
+ "model.language_model.layers.19.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
132
+ "model.language_model.layers.19.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
133
+ "model.language_model.layers.19.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
134
+ "model.language_model.layers.19.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
135
+ "model.language_model.layers.19.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
136
+ "model.language_model.layers.19.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
137
+ "model.language_model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.language_model.layers.19.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
139
+ "model.language_model.layers.19.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
140
+ "model.language_model.layers.19.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
141
+ "model.language_model.layers.2.input_layernorm.weight": "model-00002-of-00003.safetensors",
142
+ "model.language_model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
143
+ "model.language_model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
144
+ "model.language_model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
145
+ "model.language_model.layers.2.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
146
+ "model.language_model.layers.2.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
147
+ "model.language_model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
148
+ "model.language_model.layers.2.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.language_model.layers.2.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
150
+ "model.language_model.layers.2.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.language_model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
152
+ "model.language_model.layers.20.input_layernorm.weight": "model-00001-of-00003.safetensors",
153
+ "model.language_model.layers.20.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
154
+ "model.language_model.layers.20.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
155
+ "model.language_model.layers.20.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
156
+ "model.language_model.layers.20.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
157
+ "model.language_model.layers.20.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
158
+ "model.language_model.layers.20.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
159
+ "model.language_model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.language_model.layers.20.self_attn.q_norm.weight": "model-00003-of-00003.safetensors",
161
+ "model.language_model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
162
+ "model.language_model.layers.20.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
163
+ "model.language_model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
164
+ "model.language_model.layers.21.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
165
+ "model.language_model.layers.21.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
166
+ "model.language_model.layers.21.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
167
+ "model.language_model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
168
+ "model.language_model.layers.21.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
169
+ "model.language_model.layers.21.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
170
+ "model.language_model.layers.21.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
171
+ "model.language_model.layers.21.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
172
+ "model.language_model.layers.21.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
173
+ "model.language_model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
174
+ "model.language_model.layers.22.input_layernorm.weight": "model-00001-of-00003.safetensors",
175
+ "model.language_model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
176
+ "model.language_model.layers.22.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
177
+ "model.language_model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
178
+ "model.language_model.layers.22.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
179
+ "model.language_model.layers.22.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
180
+ "model.language_model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
181
+ "model.language_model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
182
+ "model.language_model.layers.22.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
183
+ "model.language_model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
184
+ "model.language_model.layers.22.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
185
+ "model.language_model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
186
+ "model.language_model.layers.23.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
187
+ "model.language_model.layers.23.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
188
+ "model.language_model.layers.23.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
189
+ "model.language_model.layers.23.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
190
+ "model.language_model.layers.23.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
191
+ "model.language_model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
192
+ "model.language_model.layers.23.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
193
+ "model.language_model.layers.23.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
194
+ "model.language_model.layers.23.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
195
+ "model.language_model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
196
+ "model.language_model.layers.24.input_layernorm.weight": "model-00001-of-00003.safetensors",
197
+ "model.language_model.layers.24.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
198
+ "model.language_model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
199
+ "model.language_model.layers.24.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
200
+ "model.language_model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
201
+ "model.language_model.layers.24.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
202
+ "model.language_model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
203
+ "model.language_model.layers.24.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
204
+ "model.language_model.layers.24.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
205
+ "model.language_model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
206
+ "model.language_model.layers.24.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
207
+ "model.language_model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
208
+ "model.language_model.layers.25.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
209
+ "model.language_model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.language_model.layers.25.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
211
+ "model.language_model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
212
+ "model.language_model.layers.25.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
213
+ "model.language_model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
214
+ "model.language_model.layers.25.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
215
+ "model.language_model.layers.25.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
216
+ "model.language_model.layers.25.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.language_model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
218
+ "model.language_model.layers.26.input_layernorm.weight": "model-00002-of-00003.safetensors",
219
+ "model.language_model.layers.26.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
220
+ "model.language_model.layers.26.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.language_model.layers.26.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
222
+ "model.language_model.layers.26.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
223
+ "model.language_model.layers.26.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
224
+ "model.language_model.layers.26.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
225
+ "model.language_model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
226
+ "model.language_model.layers.26.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
227
+ "model.language_model.layers.26.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
228
+ "model.language_model.layers.26.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
229
+ "model.language_model.layers.27.input_layernorm.weight": "model-00002-of-00003.safetensors",
230
+ "model.language_model.layers.27.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
231
+ "model.language_model.layers.27.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
232
+ "model.language_model.layers.27.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
233
+ "model.language_model.layers.27.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
234
+ "model.language_model.layers.27.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
235
+ "model.language_model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.language_model.layers.27.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
237
+ "model.language_model.layers.27.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
238
+ "model.language_model.layers.27.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
239
+ "model.language_model.layers.27.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
240
+ "model.language_model.layers.28.input_layernorm.weight": "model-00001-of-00003.safetensors",
241
+ "model.language_model.layers.28.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
242
+ "model.language_model.layers.28.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
243
+ "model.language_model.layers.28.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.language_model.layers.28.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
245
+ "model.language_model.layers.28.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
246
+ "model.language_model.layers.28.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
247
+ "model.language_model.layers.28.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.language_model.layers.28.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
249
+ "model.language_model.layers.28.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
250
+ "model.language_model.layers.28.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.language_model.layers.29.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.language_model.layers.29.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.language_model.layers.29.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.language_model.layers.29.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.language_model.layers.29.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
256
+ "model.language_model.layers.29.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
257
+ "model.language_model.layers.29.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.language_model.layers.29.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
259
+ "model.language_model.layers.29.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
260
+ "model.language_model.layers.29.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
261
+ "model.language_model.layers.29.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.language_model.layers.3.input_layernorm.weight": "model-00002-of-00003.safetensors",
263
+ "model.language_model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.language_model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
265
+ "model.language_model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.language_model.layers.3.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
267
+ "model.language_model.layers.3.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
268
+ "model.language_model.layers.3.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
269
+ "model.language_model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
270
+ "model.language_model.layers.3.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
271
+ "model.language_model.layers.3.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
272
+ "model.language_model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.language_model.layers.30.input_layernorm.weight": "model-00002-of-00003.safetensors",
274
+ "model.language_model.layers.30.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.language_model.layers.30.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.language_model.layers.30.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.language_model.layers.30.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
278
+ "model.language_model.layers.30.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
279
+ "model.language_model.layers.30.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
280
+ "model.language_model.layers.30.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
281
+ "model.language_model.layers.30.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
282
+ "model.language_model.layers.30.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
283
+ "model.language_model.layers.30.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
284
+ "model.language_model.layers.31.input_layernorm.weight": "model-00001-of-00003.safetensors",
285
+ "model.language_model.layers.31.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
286
+ "model.language_model.layers.31.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.language_model.layers.31.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
288
+ "model.language_model.layers.31.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
289
+ "model.language_model.layers.31.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
290
+ "model.language_model.layers.31.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
291
+ "model.language_model.layers.31.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
292
+ "model.language_model.layers.31.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
293
+ "model.language_model.layers.31.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
294
+ "model.language_model.layers.31.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.language_model.layers.32.input_layernorm.weight": "model-00002-of-00003.safetensors",
296
+ "model.language_model.layers.32.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
297
+ "model.language_model.layers.32.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
298
+ "model.language_model.layers.32.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
299
+ "model.language_model.layers.32.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
300
+ "model.language_model.layers.32.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
301
+ "model.language_model.layers.32.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
302
+ "model.language_model.layers.32.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
303
+ "model.language_model.layers.32.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
304
+ "model.language_model.layers.32.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
305
+ "model.language_model.layers.32.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
306
+ "model.language_model.layers.33.input_layernorm.weight": "model-00002-of-00003.safetensors",
307
+ "model.language_model.layers.33.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
308
+ "model.language_model.layers.33.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
309
+ "model.language_model.layers.33.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
310
+ "model.language_model.layers.33.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
311
+ "model.language_model.layers.33.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
312
+ "model.language_model.layers.33.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
313
+ "model.language_model.layers.33.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
314
+ "model.language_model.layers.33.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
315
+ "model.language_model.layers.33.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
316
+ "model.language_model.layers.33.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
317
+ "model.language_model.layers.34.input_layernorm.weight": "model-00001-of-00003.safetensors",
318
+ "model.language_model.layers.34.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
319
+ "model.language_model.layers.34.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
320
+ "model.language_model.layers.34.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
321
+ "model.language_model.layers.34.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
322
+ "model.language_model.layers.34.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
323
+ "model.language_model.layers.34.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
324
+ "model.language_model.layers.34.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
325
+ "model.language_model.layers.34.self_attn.q_norm.weight": "model-00003-of-00003.safetensors",
326
+ "model.language_model.layers.34.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
327
+ "model.language_model.layers.34.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
328
+ "model.language_model.layers.35.input_layernorm.weight": "model-00001-of-00003.safetensors",
329
+ "model.language_model.layers.35.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
330
+ "model.language_model.layers.35.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
331
+ "model.language_model.layers.35.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
332
+ "model.language_model.layers.35.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
333
+ "model.language_model.layers.35.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
334
+ "model.language_model.layers.35.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
335
+ "model.language_model.layers.35.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
336
+ "model.language_model.layers.35.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
337
+ "model.language_model.layers.35.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
338
+ "model.language_model.layers.35.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
339
+ "model.language_model.layers.4.input_layernorm.weight": "model-00002-of-00003.safetensors",
340
+ "model.language_model.layers.4.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
341
+ "model.language_model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
342
+ "model.language_model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
343
+ "model.language_model.layers.4.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
344
+ "model.language_model.layers.4.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
345
+ "model.language_model.layers.4.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
346
+ "model.language_model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
347
+ "model.language_model.layers.4.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
348
+ "model.language_model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
349
+ "model.language_model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
350
+ "model.language_model.layers.5.input_layernorm.weight": "model-00002-of-00003.safetensors",
351
+ "model.language_model.layers.5.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
352
+ "model.language_model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
353
+ "model.language_model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
354
+ "model.language_model.layers.5.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
355
+ "model.language_model.layers.5.self_attn.k_norm.weight": "model-00003-of-00003.safetensors",
356
+ "model.language_model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
357
+ "model.language_model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
358
+ "model.language_model.layers.5.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
359
+ "model.language_model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
360
+ "model.language_model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
361
+ "model.language_model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
362
+ "model.language_model.layers.6.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
363
+ "model.language_model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
364
+ "model.language_model.layers.6.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
365
+ "model.language_model.layers.6.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
366
+ "model.language_model.layers.6.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
367
+ "model.language_model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
368
+ "model.language_model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
369
+ "model.language_model.layers.6.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
370
+ "model.language_model.layers.6.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
371
+ "model.language_model.layers.6.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
372
+ "model.language_model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
373
+ "model.language_model.layers.7.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
374
+ "model.language_model.layers.7.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
375
+ "model.language_model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
376
+ "model.language_model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
377
+ "model.language_model.layers.7.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
378
+ "model.language_model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
379
+ "model.language_model.layers.7.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
380
+ "model.language_model.layers.7.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
381
+ "model.language_model.layers.7.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
382
+ "model.language_model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
383
+ "model.language_model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
384
+ "model.language_model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
385
+ "model.language_model.layers.8.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
386
+ "model.language_model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
387
+ "model.language_model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
388
+ "model.language_model.layers.8.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
389
+ "model.language_model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
390
+ "model.language_model.layers.8.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
391
+ "model.language_model.layers.8.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
392
+ "model.language_model.layers.8.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
393
+ "model.language_model.layers.8.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
394
+ "model.language_model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
395
+ "model.language_model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
396
+ "model.language_model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
397
+ "model.language_model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
398
+ "model.language_model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
399
+ "model.language_model.layers.9.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
400
+ "model.language_model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
401
+ "model.language_model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
402
+ "model.language_model.layers.9.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
403
+ "model.language_model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
404
+ "model.language_model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
405
+ "model.language_model.norm.weight": "model-00002-of-00003.safetensors",
406
+ "model.multi_modal_projector.linear_1.bias": "model-00001-of-00003.safetensors",
407
+ "model.multi_modal_projector.linear_1.weight": "model-00002-of-00003.safetensors",
408
+ "model.multi_modal_projector.linear_2.bias": "model-00002-of-00003.safetensors",
409
+ "model.multi_modal_projector.linear_2.weight": "model-00002-of-00003.safetensors",
410
+ "model.multi_modal_projector.pre_norm.bias": "model-00001-of-00003.safetensors",
411
+ "model.multi_modal_projector.pre_norm.weight": "model-00001-of-00003.safetensors",
412
+ "model.vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00003.safetensors",
413
+ "model.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00003.safetensors",
414
+ "model.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00002-of-00003.safetensors",
415
+ "model.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00003.safetensors",
416
+ "model.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00003.safetensors",
417
+ "model.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00003.safetensors",
418
+ "model.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00002-of-00003.safetensors",
419
+ "model.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00003.safetensors",
420
+ "model.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00002-of-00003.safetensors",
421
+ "model.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00003.safetensors",
422
+ "model.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00002-of-00003.safetensors",
423
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
424
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
425
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
426
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
427
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
428
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
429
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
430
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
431
+ "model.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00003.safetensors",
432
+ "model.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00003.safetensors",
433
+ "model.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00003.safetensors",
434
+ "model.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00003.safetensors",
435
+ "model.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00003.safetensors",
436
+ "model.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
437
+ "model.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00002-of-00003.safetensors",
438
+ "model.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00002-of-00003.safetensors",
439
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
440
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
441
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
442
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
443
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
444
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
445
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
446
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
447
+ "model.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00002-of-00003.safetensors",
448
+ "model.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00002-of-00003.safetensors",
449
+ "model.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00002-of-00003.safetensors",
450
+ "model.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00003.safetensors",
451
+ "model.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00002-of-00003.safetensors",
452
+ "model.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00002-of-00003.safetensors",
453
+ "model.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00003.safetensors",
454
+ "model.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00002-of-00003.safetensors",
455
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
456
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
457
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
458
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
459
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
460
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
461
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
462
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
463
+ "model.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00003.safetensors",
464
+ "model.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00003.safetensors",
465
+ "model.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00003.safetensors",
466
+ "model.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00002-of-00003.safetensors",
467
+ "model.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00003.safetensors",
468
+ "model.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00003.safetensors",
469
+ "model.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00003.safetensors",
470
+ "model.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00002-of-00003.safetensors",
471
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
472
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
473
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
474
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
475
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
476
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
477
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
478
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
479
+ "model.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00002-of-00003.safetensors",
480
+ "model.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00003.safetensors",
481
+ "model.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00003.safetensors",
482
+ "model.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00002-of-00003.safetensors",
483
+ "model.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00002-of-00003.safetensors",
484
+ "model.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00002-of-00003.safetensors",
485
+ "model.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00003.safetensors",
486
+ "model.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00002-of-00003.safetensors",
487
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
488
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
489
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
490
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
491
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
492
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
493
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
494
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
495
+ "model.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00003.safetensors",
496
+ "model.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00003.safetensors",
497
+ "model.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00003.safetensors",
498
+ "model.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00003.safetensors",
499
+ "model.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00003.safetensors",
500
+ "model.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00002-of-00003.safetensors",
501
+ "model.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00002-of-00003.safetensors",
502
+ "model.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00003.safetensors",
503
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
504
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
505
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
506
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
507
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
508
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
509
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
510
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
511
+ "model.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00003.safetensors",
512
+ "model.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00003.safetensors",
513
+ "model.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00002-of-00003.safetensors",
514
+ "model.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00003.safetensors",
515
+ "model.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00003.safetensors",
516
+ "model.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00002-of-00003.safetensors",
517
+ "model.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00002-of-00003.safetensors",
518
+ "model.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00003.safetensors",
519
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
520
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
521
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
522
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
523
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
524
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
525
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
526
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
527
+ "model.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00002-of-00003.safetensors",
528
+ "model.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00003.safetensors",
529
+ "model.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00003.safetensors",
530
+ "model.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00003.safetensors",
531
+ "model.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00003.safetensors",
532
+ "model.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00002-of-00003.safetensors",
533
+ "model.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00003.safetensors",
534
+ "model.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00003.safetensors",
535
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
536
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
537
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
538
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
539
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
540
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
541
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
542
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
543
+ "model.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00003.safetensors",
544
+ "model.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00002-of-00003.safetensors",
545
+ "model.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00003.safetensors",
546
+ "model.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00003.safetensors",
547
+ "model.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00002-of-00003.safetensors",
548
+ "model.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00003.safetensors",
549
+ "model.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00002-of-00003.safetensors",
550
+ "model.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00002-of-00003.safetensors",
551
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
552
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
553
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
554
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
555
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
556
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
557
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
558
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
559
+ "model.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00003.safetensors",
560
+ "model.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00003.safetensors",
561
+ "model.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00002-of-00003.safetensors",
562
+ "model.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00002-of-00003.safetensors",
563
+ "model.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00002-of-00003.safetensors",
564
+ "model.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00002-of-00003.safetensors",
565
+ "model.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00002-of-00003.safetensors",
566
+ "model.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00002-of-00003.safetensors",
567
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
568
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
569
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
570
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
571
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
572
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
573
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
574
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
575
+ "model.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00002-of-00003.safetensors",
576
+ "model.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00003.safetensors",
577
+ "model.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00003.safetensors",
578
+ "model.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00003.safetensors",
579
+ "model.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00003.safetensors",
580
+ "model.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00002-of-00003.safetensors",
581
+ "model.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00003.safetensors",
582
+ "model.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00003.safetensors",
583
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
584
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
585
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
586
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
587
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
588
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
589
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
590
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
591
+ "model.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00002-of-00003.safetensors",
592
+ "model.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00002-of-00003.safetensors",
593
+ "model.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00002-of-00003.safetensors",
594
+ "model.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00003.safetensors",
595
+ "model.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00003.safetensors",
596
+ "model.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00003.safetensors",
597
+ "model.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00002-of-00003.safetensors",
598
+ "model.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00003.safetensors",
599
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
600
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
601
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
602
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
603
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
604
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
605
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
606
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
607
+ "model.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00002-of-00003.safetensors",
608
+ "model.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00002-of-00003.safetensors",
609
+ "model.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00002-of-00003.safetensors",
610
+ "model.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00002-of-00003.safetensors",
611
+ "model.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00003.safetensors",
612
+ "model.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
613
+ "model.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00002-of-00003.safetensors",
614
+ "model.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
615
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
616
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
617
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
618
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
619
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
620
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
621
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
622
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
623
+ "model.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00003.safetensors",
624
+ "model.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00003.safetensors",
625
+ "model.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00003.safetensors",
626
+ "model.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00003.safetensors",
627
+ "model.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00003.safetensors",
628
+ "model.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00003.safetensors",
629
+ "model.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00003.safetensors",
630
+ "model.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00003.safetensors",
631
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
632
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
633
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
634
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
635
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
636
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
637
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
638
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
639
+ "model.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00002-of-00003.safetensors",
640
+ "model.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00002-of-00003.safetensors",
641
+ "model.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00002-of-00003.safetensors",
642
+ "model.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00003.safetensors",
643
+ "model.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00003.safetensors",
644
+ "model.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00003.safetensors",
645
+ "model.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00003.safetensors",
646
+ "model.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00003.safetensors",
647
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
648
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
649
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
650
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
651
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
652
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
653
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
654
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
655
+ "model.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00003.safetensors",
656
+ "model.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00002-of-00003.safetensors",
657
+ "model.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00002-of-00003.safetensors",
658
+ "model.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00003.safetensors",
659
+ "model.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00003.safetensors",
660
+ "model.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00003.safetensors",
661
+ "model.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00003.safetensors",
662
+ "model.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00003.safetensors",
663
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
664
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
665
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
666
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
667
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
668
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
669
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
670
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
671
+ "model.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00003.safetensors",
672
+ "model.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00003.safetensors",
673
+ "model.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00003.safetensors",
674
+ "model.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00002-of-00003.safetensors",
675
+ "model.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00002-of-00003.safetensors",
676
+ "model.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00002-of-00003.safetensors",
677
+ "model.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00003.safetensors",
678
+ "model.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00003.safetensors",
679
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
680
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
681
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
682
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
683
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
684
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
685
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
686
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
687
+ "model.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00002-of-00003.safetensors",
688
+ "model.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00002-of-00003.safetensors",
689
+ "model.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00002-of-00003.safetensors",
690
+ "model.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00002-of-00003.safetensors",
691
+ "model.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00003.safetensors",
692
+ "model.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00003.safetensors",
693
+ "model.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00002-of-00003.safetensors",
694
+ "model.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00003.safetensors",
695
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
696
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
697
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
698
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
699
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
700
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
701
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
702
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
703
+ "model.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00003.safetensors",
704
+ "model.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00003.safetensors",
705
+ "model.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00003.safetensors",
706
+ "model.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00003.safetensors",
707
+ "model.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00003.safetensors",
708
+ "model.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00002-of-00003.safetensors",
709
+ "model.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00003.safetensors",
710
+ "model.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00003.safetensors",
711
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
712
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
713
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
714
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
715
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
716
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
717
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
718
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
719
+ "model.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00003.safetensors",
720
+ "model.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00002-of-00003.safetensors",
721
+ "model.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00003.safetensors",
722
+ "model.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00003.safetensors",
723
+ "model.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00002-of-00003.safetensors",
724
+ "model.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00003.safetensors",
725
+ "model.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00003.safetensors",
726
+ "model.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00002-of-00003.safetensors",
727
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
728
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
729
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
730
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
731
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
732
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
733
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
734
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
735
+ "model.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00002-of-00003.safetensors",
736
+ "model.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00003.safetensors",
737
+ "model.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00002-of-00003.safetensors",
738
+ "model.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00003.safetensors",
739
+ "model.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00003.safetensors",
740
+ "model.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00002-of-00003.safetensors",
741
+ "model.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00003.safetensors",
742
+ "model.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00002-of-00003.safetensors",
743
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
744
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
745
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
746
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
747
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
748
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
749
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
750
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
751
+ "model.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00003.safetensors",
752
+ "model.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00003.safetensors",
753
+ "model.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00003.safetensors",
754
+ "model.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00003.safetensors",
755
+ "model.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00003.safetensors",
756
+ "model.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00003.safetensors",
757
+ "model.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00003.safetensors",
758
+ "model.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00003.safetensors",
759
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
760
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
761
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00002-of-00003.safetensors",
762
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00002-of-00003.safetensors",
763
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
764
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
765
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
766
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
767
+ "model.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00002-of-00003.safetensors",
768
+ "model.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00003.safetensors",
769
+ "model.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00002-of-00003.safetensors",
770
+ "model.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00003.safetensors",
771
+ "model.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00003.safetensors",
772
+ "model.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00002-of-00003.safetensors",
773
+ "model.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00003.safetensors",
774
+ "model.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00002-of-00003.safetensors",
775
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
776
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
777
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
778
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
779
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
780
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
781
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
782
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
783
+ "model.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00003.safetensors",
784
+ "model.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00002-of-00003.safetensors",
785
+ "model.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00002-of-00003.safetensors",
786
+ "model.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00002-of-00003.safetensors",
787
+ "model.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00002-of-00003.safetensors",
788
+ "model.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00003.safetensors",
789
+ "model.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00002-of-00003.safetensors",
790
+ "model.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00003.safetensors",
791
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
792
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
793
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
794
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
795
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
796
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
797
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
798
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
799
+ "model.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00003.safetensors",
800
+ "model.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00003.safetensors",
801
+ "model.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00003.safetensors",
802
+ "model.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00003.safetensors",
803
+ "model.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00003.safetensors",
804
+ "model.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00003.safetensors",
805
+ "model.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00003.safetensors",
806
+ "model.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00002-of-00003.safetensors",
807
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
808
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
809
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
810
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
811
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
812
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
813
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
814
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
815
+ "model.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00003.safetensors",
816
+ "model.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00003.safetensors",
817
+ "model.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00003.safetensors",
818
+ "model.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00003.safetensors",
819
+ "model.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00003.safetensors",
820
+ "model.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00003.safetensors",
821
+ "model.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00002-of-00003.safetensors",
822
+ "model.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00003.safetensors",
823
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
824
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
825
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
826
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
827
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
828
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
829
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
830
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
831
+ "model.vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00003.safetensors",
832
+ "model.vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00003.safetensors"
833
+ }
834
+ }
modeling_r.py ADDED
@@ -0,0 +1,770 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed under the Apache License, Version 2.0 (the "License");
2
+ # you may not use this file except in compliance with the License.
3
+ # You may obtain a copy of the License at
4
+ #
5
+ # http://www.apache.org/licenses/LICENSE-2.0
6
+ #
7
+ # Unless required by applicable law or agreed to in writing, software
8
+ # distributed under the License is distributed on an "AS IS" BASIS,
9
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10
+ # See the License for the specific language governing permissions and
11
+ # limitations under the License.
12
+
13
+ import math
14
+ from dataclasses import dataclass
15
+ from typing import Optional, Union
16
+
17
+ import numpy as np
18
+ import torch
19
+ from torch import nn
20
+
21
+ from transformers.activations import GELUActivation
22
+
23
+ from transformers.generation import GenerationMixin
24
+ from transformers.image_processing_utils import select_best_resolution
25
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
26
+ from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
27
+ from transformers.modeling_utils import PreTrainedModel
28
+ from transformers.models.auto import AutoModel
29
+ from transformers.processing_utils import Unpack
30
+ from transformers.utils import (
31
+ can_return_tuple,
32
+ is_torchdynamo_compiling,
33
+ logging,
34
+ )
35
+ from .configuration_r import RConfig
36
+
37
+
38
+ logger = logging.get_logger(__name__)
39
+
40
+
41
+ @dataclass
42
+ class RModelOutputWithPast(BaseModelOutputWithPast):
43
+
44
+
45
+ image_hidden_states: Optional[torch.FloatTensor] = None
46
+
47
+ video_hidden_states: Optional[torch.FloatTensor] = None
48
+
49
+
50
+ @dataclass
51
+ class RCausalLMOutputWithPast(ModelOutput):
52
+
53
+ loss: Optional[torch.FloatTensor] = None
54
+ logits: Optional[torch.FloatTensor] = None
55
+ past_key_values: Optional[list[torch.FloatTensor]] = None
56
+ hidden_states: Optional[tuple[torch.FloatTensor]] = None
57
+ attentions: Optional[tuple[torch.FloatTensor]] = None
58
+ image_hidden_states: Optional[torch.FloatTensor] = None
59
+
60
+ video_hidden_states: Optional[torch.FloatTensor] = None
61
+
62
+
63
+ class RPooler(nn.Module):
64
+ def __init__(self, config):
65
+ super().__init__()
66
+
67
+ mode = config.spatial_pool_mode
68
+ stride = config.spatial_pool_stride
69
+ out_channels = getattr(config, "spatial_pool_out_channels", config.vision_config.hidden_size)
70
+ self.image_size = (config.vision_config.image_size // config.vision_config.patch_size) ** 2
71
+
72
+ if mode == "average":
73
+ self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride)
74
+ elif mode == "max":
75
+ self.pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
76
+ elif mode == "conv":
77
+ self.pool = nn.Conv2d(
78
+ in_channels=config.vision_config.hidden_size,
79
+ out_channels=out_channels,
80
+ kernel_size=stride,
81
+ stride=stride,
82
+ )
83
+ else:
84
+ raise ValueError(f"Unknown pooling mode: {mode}. Has to be one of [`average`, `max`, `conv`]")
85
+
86
+ def forward(self, image_features):
87
+ ori_width = int(math.sqrt(image_features.shape[1] * self.image_size // self.image_size))
88
+ ori_height = int(ori_width * self.image_size // self.image_size)
89
+
90
+ batch_size, _, dim = image_features.shape
91
+ image_features_spatial = image_features.view(batch_size, ori_height, ori_height, dim).permute(0, 3, 1, 2)
92
+ image_features_spatial_pool = self.pool(image_features_spatial)
93
+
94
+ return image_features_spatial_pool.flatten(2).transpose(1, 2).contiguous()
95
+
96
+
97
+ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
98
+ if not isinstance(grid_pinpoints, list):
99
+ raise TypeError("grid_pinpoints should be a list of tuples or lists")
100
+
101
+ # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
102
+ if not isinstance(image_size, (list, tuple)):
103
+ if not isinstance(image_size, (torch.Tensor, np.ndarray)):
104
+ raise TypeError(
105
+ f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
106
+ )
107
+ image_size = image_size.tolist()
108
+
109
+ height, width = select_best_resolution(image_size, grid_pinpoints)
110
+ return height // patch_size, width // patch_size
111
+
112
+
113
+ def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
114
+ if not isinstance(grid_pinpoints, list):
115
+ raise TypeError("grid_pinpoints should be a list of tuples or lists")
116
+
117
+ # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
118
+ if not isinstance(image_size, (list, tuple)):
119
+ if not isinstance(image_size, (torch.Tensor, np.ndarray)):
120
+ raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
121
+ image_size = image_size.tolist()
122
+
123
+ best_resolution = select_best_resolution(image_size, grid_pinpoints)
124
+ height, width = best_resolution
125
+ num_patches = 0
126
+ # consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
127
+ for i in range(0, height, patch_size):
128
+ for j in range(0, width, patch_size):
129
+ num_patches += 1
130
+ # add the base patch
131
+ num_patches += 1
132
+ return num_patches
133
+
134
+
135
+ def unpad_image(tensor, original_size):
136
+ if not isinstance(original_size, (list, tuple)):
137
+ if not isinstance(original_size, (torch.Tensor, np.ndarray)):
138
+ raise TypeError(
139
+ f"image_size invalid type: {type(original_size)} not valid, should be either list, tuple, np.ndarray or tensor"
140
+ )
141
+ original_size = original_size.tolist()
142
+ original_height, original_width = original_size
143
+ current_height, current_width = tensor.shape[1:]
144
+
145
+ original_aspect_ratio = original_width / original_height
146
+ current_aspect_ratio = current_width / current_height
147
+
148
+ if original_aspect_ratio > current_aspect_ratio:
149
+ scale_factor = current_width / original_width
150
+ new_height = int(round(original_height * scale_factor, 7))
151
+ padding = (current_height - new_height) // 2
152
+ unpadded_tensor = tensor[:, padding : current_height - padding, :]
153
+ else:
154
+ scale_factor = current_height / original_height
155
+ new_width = int(round(original_width * scale_factor, 7))
156
+ padding = (current_width - new_width) // 2
157
+ unpadded_tensor = tensor[:, :, padding : current_width - padding]
158
+
159
+ return unpadded_tensor
160
+
161
+
162
+ class RPreTrainedModel(PreTrainedModel):
163
+ config_class = RConfig
164
+ base_model_prefix = ""
165
+ supports_gradient_checkpointing = True
166
+ # _no_split_modules = ["LlamaDecoderLayer"]
167
+ _no_split_modules = ["SiglipEncoderLayer", "Qwen3DecoderLayer", ]
168
+ _skip_keys_device_placement = "past_key_values"
169
+ _supports_cache_class = True
170
+ _supports_flash_attn_2 = True
171
+ _supports_sdpa = True
172
+ _supports_quantized_cache = True
173
+ _supports_static_cache = True
174
+ _supports_flex_attn = True
175
+ _supports_attention_backend = True
176
+
177
+ def _init_weights(self, module):
178
+ std = getattr(self.config, "initializer_range", self.config.get_text_config().initializer_range)
179
+
180
+ if isinstance(module, nn.Linear):
181
+ module.weight.data.normal_(mean=0.0, std=std)
182
+ if module.bias is not None:
183
+ module.bias.data.zero_()
184
+ elif isinstance(module, RModel):
185
+ embed_std = 1 / math.sqrt(self.config.text_config.hidden_size)
186
+ module.image_newline.data.normal_(mean=0.0, std=embed_std)
187
+
188
+
189
+ class RMultiModalProjector(nn.Module):
190
+ def __init__(self, config):
191
+ super().__init__()
192
+ print("Using MultiModalProjector_withLayerNorm")
193
+
194
+ self.pre_norm = torch.nn.LayerNorm(config.vision_config.hidden_size, eps=1e-06)
195
+ self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
196
+ self.act = GELUActivation()
197
+ self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
198
+
199
+
200
+ def forward(self, image_feature: torch.Tensor) -> torch.Tensor:
201
+ image_feature = self.pre_norm(image_feature)
202
+ hidden_states = self.linear_1(image_feature)
203
+ hidden_states = self.act(hidden_states)
204
+ hidden_states = self.linear_2(hidden_states)
205
+
206
+ return hidden_states
207
+
208
+ class RModel(RPreTrainedModel):
209
+ _checkpoint_conversion_mapping = {"language_model.model": "language_model"}
210
+
211
+ def __init__(self, config):
212
+ super().__init__(config)
213
+ self.vision_tower = AutoModel.from_config(config.vision_config)
214
+ self.multi_modal_projector = RMultiModalProjector(config)
215
+ embed_std = 1 / math.sqrt(config.text_config.hidden_size)
216
+ self.image_newline = nn.Parameter(torch.randn(config.text_config.hidden_size, dtype=self.dtype) * embed_std)
217
+
218
+ self.vocab_size = config.text_config.vocab_size
219
+ self.language_model = AutoModel.from_config(config.text_config)
220
+ self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
221
+ self.post_init()
222
+
223
+ def get_input_embeddings(self):
224
+ return self.language_model.get_input_embeddings()
225
+
226
+ def set_input_embeddings(self, value):
227
+ self.language_model.set_input_embeddings(value)
228
+
229
+ def pack_image_features(self, image_features, image_sizes, image_newline=None, vision_aspect_ratio="anyres"):
230
+ new_image_features = []
231
+ feature_lens = []
232
+ for image_idx, image_feature in enumerate(image_features):
233
+ if image_feature.shape[0] > 1:
234
+ base_image_feature = image_feature[0]
235
+ image_feature = image_feature[1:]
236
+ height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
237
+ if height * width != base_image_feature.shape[0]:
238
+ raise ValueError("The number of patches is not consistent with the image size.")
239
+ num_patch_height, num_patch_width = get_anyres_image_grid_shape(
240
+ image_sizes[image_idx],
241
+ self.config.image_grid_pinpoints,
242
+ self.config.vision_config.image_size,
243
+ )
244
+ image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
245
+ image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
246
+ image_feature = image_feature.flatten(1, 2).flatten(2, 3)
247
+ image_feature = unpad_image(image_feature, image_sizes[image_idx])
248
+ try:
249
+ max_num_patches = int(vision_aspect_ratio.strip("anyres_max_"))
250
+ channels, curr_height, curr_width = image_feature.shape
251
+ ratio = math.sqrt(curr_height * curr_width / (max_num_patches * height**2))
252
+ if ratio > 1.1:
253
+ image_feature = image_feature[None]
254
+ image_feature = nn.functional.interpolate(
255
+ image_feature, [int(curr_height // ratio), int(curr_width // ratio)], mode="bilinear"
256
+ )[0]
257
+ except:
258
+ pass
259
+ if image_newline is not None:
260
+ image_feature = torch.cat(
261
+ (
262
+ image_feature,
263
+ image_newline[:, None, None]
264
+ .expand(*image_feature.shape[:-1], 1)
265
+ .to(image_feature.device, image_feature.dtype),
266
+ ),
267
+ dim=-1,
268
+ )
269
+ image_feature = image_feature.flatten(1, 2).transpose(0, 1)
270
+ image_feature = torch.cat((base_image_feature, image_feature), dim=0)
271
+ else:
272
+ image_feature = image_feature[0]
273
+ if image_newline is not None:
274
+ image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
275
+ image_feature = image_feature.flatten(0, 1)
276
+ new_image_features.append(image_feature)
277
+ feature_lens.append(image_feature.size(0))
278
+ feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features[0].device)
279
+ return new_image_features, feature_lens
280
+
281
+ def get_image_features(
282
+ self,
283
+ pixel_values: torch.FloatTensor,
284
+ image_sizes: torch.Tensor,
285
+ vision_feature_layer: Optional[Union[int, list[int]]] = None,
286
+ vision_feature_select_strategy: Optional[str] = None,
287
+ vision_aspect_ratio: Optional[str] = None,
288
+ batch_num_images: Optional[torch.LongTensor] = None,
289
+ ):
290
+ vision_feature_layer = (
291
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
292
+ )
293
+ vision_feature_select_strategy = (
294
+ vision_feature_select_strategy
295
+ if vision_feature_select_strategy is not None
296
+ else self.config.vision_feature_select_strategy
297
+ )
298
+ vision_aspect_ratio = (
299
+ vision_aspect_ratio if vision_aspect_ratio is not None else self.config.vision_aspect_ratio
300
+ )
301
+
302
+ if batch_num_images is None:
303
+ # treat this as a single-image case for backward compatibility
304
+ need_patching = [True] * len(image_sizes)
305
+ else:
306
+ need_patching = [n == 1 for n in batch_num_images for _ in range(n)]
307
+ image_num_patches = [
308
+ image_size_to_num_patches(
309
+ image_size=imsize,
310
+ grid_pinpoints=self.config.image_grid_pinpoints,
311
+ patch_size=self.config.vision_config.image_size,
312
+ )
313
+ if should_patch
314
+ else 1
315
+ for imsize, should_patch in zip(image_sizes, need_patching)
316
+ ]
317
+
318
+ if isinstance(pixel_values, torch.Tensor):
319
+ if pixel_values.dim() == 5:
320
+ # stacked if input is (batch_size, num_patches, num_channels, height, width)
321
+ _pixel_values_list = [pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)]
322
+ pixel_values = torch.cat(_pixel_values_list, dim=0)
323
+ elif pixel_values.dim() != 4:
324
+ # otherwise has to be stacked from list of (num_patches, num_channels, height, width)
325
+ raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
326
+ elif isinstance(pixel_values, list):
327
+ # list of [(batch_size, num_patches, num_channels, height, width)]
328
+ assert len(pixel_values) == len(image_num_patches), (
329
+ f"pixel_values is a list of {len(pixel_values)} tensors, but image_num_patches is of length {len(image_num_patches)}"
330
+ )
331
+ _pixel_values_list = [pix_val.squeeze(0)[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)]
332
+
333
+ pixel_values = torch.cat(_pixel_values_list, dim=0)
334
+
335
+ image_features = self.vision_tower(pixel_values, output_hidden_states=True)
336
+ # If we have one vision feature layer, return the corresponding hidden states,
337
+ # otherwise, select the hidden states of each feature layer and concatenate them
338
+ if isinstance(vision_feature_layer, int):
339
+ selected_image_feature = image_features.hidden_states[vision_feature_layer]
340
+ else:
341
+ hs_pool = [image_features.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
342
+ selected_image_feature = torch.cat(hs_pool, dim=-1)
343
+
344
+ if vision_feature_select_strategy == "default":
345
+ selected_image_feature = selected_image_feature[:, 1:]
346
+ elif vision_feature_select_strategy == "full":
347
+ selected_image_feature = selected_image_feature
348
+ image_features = self.multi_modal_projector(selected_image_feature)
349
+
350
+ image_features = torch.split(image_features, image_num_patches, dim=0)
351
+
352
+ image_features, feature_lens = self.pack_image_features(
353
+ image_features,
354
+ image_sizes,
355
+ image_newline=self.image_newline,
356
+ vision_aspect_ratio=vision_aspect_ratio,
357
+ )
358
+
359
+ return image_features
360
+
361
+ @can_return_tuple
362
+ def forward(
363
+ self,
364
+ input_ids: torch.LongTensor = None,
365
+ pixel_values: torch.FloatTensor = None,
366
+ image_sizes: Optional[torch.LongTensor] = None,
367
+ pixel_values_videos: torch.FloatTensor = None,
368
+ image_sizes_videos: Optional[torch.LongTensor] = None,
369
+ attention_mask: Optional[torch.Tensor] = None,
370
+ position_ids: Optional[torch.LongTensor] = None,
371
+ past_key_values: Optional[list[torch.FloatTensor]] = None,
372
+ inputs_embeds: Optional[torch.FloatTensor] = None,
373
+ vision_feature_layer: Optional[Union[int, list[int]]] = None,
374
+ vision_feature_select_strategy: Optional[str] = None,
375
+ vision_aspect_ratio: Optional[str] = None,
376
+ batch_num_images: Optional[torch.LongTensor] = None,
377
+ use_cache: Optional[bool] = None,
378
+ output_attentions: Optional[bool] = None,
379
+ output_hidden_states: Optional[bool] = None,
380
+ return_dict: Optional[bool] = None,
381
+ cache_position: Optional[torch.LongTensor] = None,
382
+ **kwargs: Unpack[FlashAttentionKwargs],
383
+ ) -> Union[tuple, RModelOutputWithPast]:
384
+
385
+
386
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
387
+ output_hidden_states = (
388
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
389
+ )
390
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
391
+ vision_feature_layer = (
392
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
393
+ )
394
+ vision_feature_select_strategy = (
395
+ vision_feature_select_strategy
396
+ if vision_feature_select_strategy is not None
397
+ else self.config.vision_feature_select_strategy
398
+ )
399
+ vision_aspect_ratio = (
400
+ vision_aspect_ratio if vision_aspect_ratio is not None else self.config.vision_aspect_ratio
401
+ )
402
+
403
+ if (input_ids is None) ^ (inputs_embeds is not None):
404
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
405
+
406
+ if (pixel_values is not None or pixel_values_videos is not None) and inputs_embeds is not None:
407
+ raise ValueError(
408
+ "You cannot specify both `pixel_values`/`pixel_values_videos` and `inputs_embeds` at the same time, "
409
+ "and must specify either one"
410
+ )
411
+ if inputs_embeds is None:
412
+ inputs_embeds = self.get_input_embeddings()(input_ids)
413
+
414
+ # Images are processed with Anyres
415
+
416
+ if pixel_values is not None:
417
+ image_features = self.get_image_features(
418
+ pixel_values,
419
+ image_sizes,
420
+ vision_feature_layer=vision_feature_layer,
421
+ vision_feature_select_strategy=vision_feature_select_strategy,
422
+ batch_num_images=batch_num_images,
423
+ )
424
+ image_features = torch.cat(image_features, dim=0)
425
+
426
+ special_image_mask = (input_ids == self.config.image_token_id).unsqueeze(-1)
427
+ special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
428
+ if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
429
+ n_image_tokens = (input_ids == self.config.image_token_id).sum()
430
+ n_image_features = image_features.shape[0]
431
+ raise ValueError(
432
+ f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
433
+ )
434
+ image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
435
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
436
+
437
+ # Video are simply embedded and further pooled to decrease seq len
438
+ if pixel_values_videos is not None:
439
+ video_features = self.get_video_features(
440
+ pixel_values_videos,
441
+ vision_feature_layer=vision_feature_layer,
442
+ vision_feature_select_strategy=vision_feature_select_strategy,
443
+ )
444
+ image_newline = (
445
+ self.image_newline[None, None, :].repeat(video_features.shape[0], 1, 1).to(video_features.device)
446
+ )
447
+ video_features = torch.cat((video_features, image_newline), dim=1)
448
+ video_features = video_features.flatten(0, 1)
449
+
450
+ special_video_mask = (input_ids == self.config.video_token_id).unsqueeze(-1)
451
+ special_video_mask = special_video_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
452
+ if not is_torchdynamo_compiling() and inputs_embeds[special_video_mask].numel() != video_features.numel():
453
+ n_video_tokens = (input_ids == self.config.video_token_id).sum()
454
+ n_video_features = video_features.shape[0]
455
+ raise ValueError(
456
+ f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
457
+ )
458
+ video_features = video_features.to(inputs_embeds.device, inputs_embeds.dtype)
459
+ inputs_embeds = inputs_embeds.masked_scatter(special_video_mask, video_features)
460
+
461
+ outputs = self.language_model(
462
+ attention_mask=attention_mask,
463
+ position_ids=position_ids,
464
+ past_key_values=past_key_values,
465
+ inputs_embeds=inputs_embeds,
466
+ use_cache=use_cache,
467
+ output_attentions=output_attentions,
468
+ output_hidden_states=output_hidden_states,
469
+ return_dict=True,
470
+ cache_position=cache_position,
471
+ **kwargs,
472
+ )
473
+
474
+ return RModelOutputWithPast(
475
+ last_hidden_state=outputs.last_hidden_state,
476
+ past_key_values=outputs.past_key_values,
477
+ hidden_states=outputs.hidden_states,
478
+ attentions=outputs.attentions,
479
+ image_hidden_states=image_features if pixel_values is not None else None,
480
+ video_hidden_states=video_features if pixel_values_videos is not None else None,
481
+ )
482
+
483
+ def apply_pooling(self, image_features):
484
+ height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
485
+ batch_frames, seq_len, dim = image_features.shape
486
+ image_features = image_features.view(batch_frames, height, width, -1)
487
+ image_features = image_features.permute(0, 3, 1, 2).contiguous()
488
+
489
+ height, width = image_features.shape[2:]
490
+ scaled_shape = [math.ceil(height / 2), math.ceil(width / 2)]
491
+ image_features = nn.functional.interpolate(image_features, size=scaled_shape, mode="bilinear")
492
+
493
+ image_features = image_features.permute(0, 2, 3, 1)
494
+ image_features = image_features.view(batch_frames, -1, dim)
495
+ return image_features
496
+
497
+ def get_video_features(
498
+ self,
499
+ pixel_values: torch.FloatTensor,
500
+ vision_feature_layer: Union[int, list[int]],
501
+ vision_feature_select_strategy: str,
502
+ ):
503
+ batch_size, frames, channels, height, width = pixel_values.shape
504
+ pixel_values = pixel_values.view(batch_size * frames, channels, height, width)
505
+ video_features = self.vision_tower(pixel_values, output_hidden_states=True)
506
+
507
+ # If we have one vision feature layer, return the corresponding hidden states,
508
+ # otherwise, select the hidden states of each feature layer and concatenate them
509
+ if isinstance(vision_feature_layer, int):
510
+ selected_video_feature = video_features.hidden_states[vision_feature_layer]
511
+ else:
512
+ hs_pool = [video_features.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
513
+ selected_video_feature = torch.cat(hs_pool, dim=-1)
514
+
515
+ if vision_feature_select_strategy == "default":
516
+ selected_video_feature = selected_video_feature[:, 1:]
517
+ elif vision_feature_select_strategy == "full":
518
+ selected_video_feature = selected_video_feature
519
+ video_features = self.multi_modal_projector(selected_video_feature)
520
+
521
+ video_features = self.apply_pooling(video_features)
522
+ video_features = video_features.reshape(batch_size, frames * video_features.shape[1], -1)
523
+
524
+ return video_features
525
+
526
+
527
+ class RForConditionalGeneration(RPreTrainedModel, GenerationMixin):
528
+ _checkpoint_conversion_mapping = {
529
+ "^language_model.model": "model.language_model",
530
+ "^vision_tower": "model.vision_tower",
531
+ "^multi_modal_projector": "model.multi_modal_projector",
532
+ "^image_newline": "model.image_newline",
533
+ "^language_model.lm_head": "lm_head",
534
+ }
535
+ _tied_weights_keys = ["lm_head.weight"]
536
+
537
+ def __init__(self, config: RConfig):
538
+ super().__init__(config)
539
+ self.model = RModel(config)
540
+ self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
541
+ self.post_init()
542
+
543
+ def get_input_embeddings(self):
544
+ return self.model.get_input_embeddings()
545
+
546
+ def set_input_embeddings(self, value):
547
+ self.model.set_input_embeddings(value)
548
+
549
+ def get_output_embeddings(self) -> nn.Module:
550
+ return self.lm_head
551
+
552
+ def set_output_embeddings(self, new_embeddings):
553
+ self.lm_head = new_embeddings
554
+
555
+ def set_decoder(self, decoder):
556
+ self.model = decoder
557
+
558
+ def get_decoder(self):
559
+ return self.model
560
+
561
+ def pack_image_features(self, image_features, image_sizes, vision_feature_select_strategy, image_newline=None):
562
+ return self.model.pack_image_features(
563
+ image_features=image_features,
564
+ image_sizes=image_sizes,
565
+ vision_feature_select_strategy=vision_feature_select_strategy,
566
+ image_newline=image_newline,
567
+ )
568
+
569
+ def get_image_features(
570
+ self,
571
+ pixel_values: torch.FloatTensor,
572
+ image_sizes: torch.Tensor,
573
+ vision_feature_layer: Optional[Union[int, list[int]]] = None,
574
+ vision_feature_select_strategy: Optional[str] = None,
575
+ ):
576
+ return self.model.get_image_features(
577
+ pixel_values=pixel_values,
578
+ image_sizes=image_sizes,
579
+ vision_feature_layer=vision_feature_layer,
580
+ vision_feature_select_strategy=vision_feature_select_strategy,
581
+ )
582
+
583
+ # Make modules available throught conditional class for BC
584
+ @property
585
+ def language_model(self):
586
+ return self.model.language_model
587
+
588
+ @property
589
+ def vision_tower(self):
590
+ return self.model.vision_tower
591
+
592
+ @property
593
+ def multi_modal_projector(self):
594
+ return self.model.multi_modal_projector
595
+
596
+ @can_return_tuple
597
+ def forward(
598
+ self,
599
+ input_ids: torch.LongTensor = None,
600
+ pixel_values: torch.FloatTensor = None,
601
+ image_sizes: Optional[torch.LongTensor] = None,
602
+ pixel_values_videos: torch.FloatTensor = None,
603
+ image_sizes_videos: Optional[torch.LongTensor] = None,
604
+ attention_mask: Optional[torch.Tensor] = None,
605
+ position_ids: Optional[torch.LongTensor] = None,
606
+ past_key_values: Optional[list[torch.FloatTensor]] = None,
607
+ inputs_embeds: Optional[torch.FloatTensor] = None,
608
+ vision_feature_layer: Optional[Union[int, list[int]]] = None,
609
+ vision_feature_select_strategy: Optional[str] = None,
610
+ vision_aspect_ratio: Optional[str] = None,
611
+ batch_num_images: Optional[torch.LongTensor] = None,
612
+ labels: Optional[torch.LongTensor] = None,
613
+ use_cache: Optional[bool] = None,
614
+ output_attentions: Optional[bool] = None,
615
+ output_hidden_states: Optional[bool] = None,
616
+ return_dict: Optional[bool] = None,
617
+ cache_position: Optional[torch.LongTensor] = None,
618
+ logits_to_keep: Union[int, torch.Tensor] = 0,
619
+ **kwargs,
620
+ ) -> Union[tuple, RCausalLMOutputWithPast]:
621
+
622
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
623
+ output_hidden_states = (
624
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
625
+ )
626
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
627
+ vision_feature_layer = (
628
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
629
+ )
630
+ vision_feature_select_strategy = (
631
+ vision_feature_select_strategy
632
+ if vision_feature_select_strategy is not None
633
+ else self.config.vision_feature_select_strategy
634
+ )
635
+ vision_aspect_ratio = (
636
+ vision_aspect_ratio if vision_aspect_ratio is not None else self.config.vision_aspect_ratio
637
+ )
638
+
639
+
640
+
641
+ outputs = self.model(
642
+ input_ids=input_ids,
643
+ pixel_values=pixel_values,
644
+ pixel_values_videos=pixel_values_videos,
645
+ image_sizes=image_sizes,
646
+ image_sizes_videos=image_sizes_videos,
647
+ vision_aspect_ratio=vision_aspect_ratio,
648
+ vision_feature_layer=vision_feature_layer,
649
+ vision_feature_select_strategy=vision_feature_select_strategy,
650
+ batch_num_images=batch_num_images,
651
+ attention_mask=attention_mask,
652
+ position_ids=position_ids,
653
+ past_key_values=past_key_values,
654
+ inputs_embeds=inputs_embeds,
655
+ use_cache=use_cache,
656
+ output_attentions=output_attentions,
657
+ output_hidden_states=output_hidden_states,
658
+ return_dict=True,
659
+ cache_position=cache_position,
660
+ logits_to_keep=logits_to_keep,
661
+ **kwargs,
662
+ )
663
+
664
+ hidden_states = outputs[0]
665
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
666
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
667
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
668
+
669
+ loss = None
670
+ if labels is not None:
671
+ loss = self.loss_function(
672
+ logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs
673
+ )
674
+
675
+ return RCausalLMOutputWithPast(
676
+ loss=loss,
677
+ logits=logits,
678
+ past_key_values=outputs.past_key_values,
679
+ hidden_states=outputs.hidden_states,
680
+ attentions=outputs.attentions,
681
+ image_hidden_states=outputs.image_hidden_states,
682
+ video_hidden_states=outputs.video_hidden_states,
683
+ )
684
+
685
+ def prepare_inputs_for_generation(
686
+ self,
687
+ input_ids,
688
+ past_key_values=None,
689
+ inputs_embeds=None,
690
+ pixel_values=None,
691
+ image_sizes=None,
692
+ pixel_values_videos=None,
693
+ image_sizes_videos=None,
694
+ attention_mask=None,
695
+ cache_position=None,
696
+ logits_to_keep=None,
697
+ **kwargs,
698
+ ):
699
+ # Overwritten -- in specific circumstances we don't want to forward image inputs to the model
700
+
701
+ model_inputs = super().prepare_inputs_for_generation(
702
+ input_ids,
703
+ past_key_values=past_key_values,
704
+ inputs_embeds=inputs_embeds,
705
+ attention_mask=attention_mask,
706
+ cache_position=cache_position,
707
+ logits_to_keep=logits_to_keep,
708
+ **kwargs,
709
+ )
710
+
711
+ if cache_position[0] == 0:
712
+ # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
713
+ # Otherwise we need pixel values to be passed to model
714
+ model_inputs["pixel_values"] = pixel_values
715
+ model_inputs["image_sizes"] = image_sizes
716
+ model_inputs["pixel_values_videos"] = pixel_values_videos
717
+ model_inputs["image_sizes_videos"] = image_sizes_videos
718
+
719
+ return model_inputs
720
+
721
+ @staticmethod
722
+ def _prepare_4d_causal_attention_mask_with_cache_position(
723
+ attention_mask: torch.Tensor,
724
+ sequence_length: int,
725
+ target_length: int,
726
+ dtype: torch.dtype,
727
+ cache_position: torch.Tensor,
728
+ batch_size: int,
729
+ **kwargs,
730
+ ):
731
+
732
+ if attention_mask is not None and attention_mask.dim() == 4:
733
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
734
+ causal_mask = attention_mask
735
+ else:
736
+ min_dtype = torch.finfo(dtype).min
737
+ causal_mask = torch.full(
738
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
739
+ )
740
+ if sequence_length != 1:
741
+ causal_mask = torch.triu(causal_mask, diagonal=1)
742
+ causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
743
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
744
+ if attention_mask is not None:
745
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
746
+ mask_length = attention_mask.shape[-1]
747
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
748
+ causal_mask.device
749
+ )
750
+ padding_mask = padding_mask == 0
751
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
752
+ padding_mask, min_dtype
753
+ )
754
+
755
+ return causal_mask
756
+
757
+ def get_video_features(
758
+ self,
759
+ pixel_values: torch.FloatTensor,
760
+ vision_feature_layer: Optional[Union[int, list[int]]] = None,
761
+ vision_feature_select_strategy: Optional[str] = None,
762
+ ):
763
+ return self.model.get_video_features(
764
+ pixel_values=pixel_values,
765
+ vision_feature_layer=vision_feature_layer,
766
+ vision_feature_select_strategy=vision_feature_select_strategy,
767
+ )
768
+
769
+
770
+ __all__ = ["RModel", "RForConditionalGeneration", "RPreTrainedModel"]
preprocessor_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_pad": true,
5
+ "do_rescale": true,
6
+ "do_resize": true,
7
+ "image_grid_pinpoints": [
8
+ [
9
+ 384,
10
+ 768
11
+ ],
12
+ [
13
+ 768,
14
+ 384
15
+ ],
16
+ [
17
+ 768,
18
+ 768
19
+ ],
20
+ [
21
+ 1152,
22
+ 384
23
+ ],
24
+ [
25
+ 384,
26
+ 1152
27
+ ]
28
+ ],
29
+ "image_mean": [
30
+ 0.5,
31
+ 0.5,
32
+ 0.5
33
+ ],
34
+ "image_processor_type": "RImageProcessor",
35
+ "image_std": [
36
+ 0.5,
37
+ 0.5,
38
+ 0.5
39
+ ],
40
+ "processor_class": "RProcessor",
41
+ "auto_map": {
42
+ "AutoProcessor": "processing_r.RProcessor",
43
+ "AutoImageProcessor": "image_processing_r.RImageProcessor"
44
+ },
45
+ "resample": 2,
46
+ "rescale_factor": 0.00392156862745098,
47
+ "size": {
48
+ "height": 384,
49
+ "width": 384
50
+ }
51
+ }
processing_xvl.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Licensed under the Apache License, Version 2.0 (the "License");
2
+ # you may not use this file except in compliance with the License.
3
+ # You may obtain a copy of the License at
4
+ #
5
+ # http://www.apache.org/licenses/LICENSE-2.0
6
+ #
7
+ # Unless required by applicable law or agreed to in writing, software
8
+ # distributed under the License is distributed on an "AS IS" BASIS,
9
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10
+ # See the License for the specific language governing permissions and
11
+ # limitations under the License.
12
+
13
+
14
+ import math
15
+ from collections.abc import Iterable
16
+ from typing import Union
17
+
18
+ import numpy as np
19
+
20
+ from transformers.feature_extraction_utils import BatchFeature
21
+ from transformers.image_processing_utils import select_best_resolution
22
+ from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
23
+ from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
24
+ from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
25
+ from transformers.utils import logging
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+
31
+ class RProcessorKwargs(ProcessingKwargs, total=False):
32
+ # see processing_utils.ProcessingKwargs documentation for usage.
33
+ _defaults = {
34
+ "text_kwargs": {
35
+ "padding": False,
36
+
37
+ },
38
+ "image_kwargs": {},
39
+ "videos_kwargs": {},
40
+ }
41
+
42
+
43
+ class RProcessor(ProcessorMixin):
44
+ attributes = ["image_processor", "tokenizer", "video_processor"]
45
+ valid_kwargs = [
46
+ "chat_template",
47
+ "num_image_tokens",
48
+ "image_processor_type",
49
+ "vision_feature_select_strategy",
50
+ "image_token",
51
+ "video_token",
52
+ "vision_aspect_ratio",
53
+ ]
54
+ image_processor_class = "AutoImageProcessor"
55
+ tokenizer_class = "AutoTokenizer"
56
+ video_processor_class = "AutoVideoProcessor"
57
+
58
+ def __init__(
59
+ self,
60
+ image_processor=None,
61
+ tokenizer=None,
62
+ video_processor=None,
63
+ num_image_tokens=None,
64
+ vision_feature_select_strategy=None,
65
+ chat_template=None,
66
+ image_token="<image>",
67
+ video_token="<video>",
68
+ vision_aspect_ratio= "anyres",
69
+ **kwargs,
70
+ ):
71
+ self.num_image_tokens = num_image_tokens
72
+ self.vision_feature_select_strategy = vision_feature_select_strategy
73
+ self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token
74
+ self.video_token = tokenizer.video_token if hasattr(tokenizer, "video_token") else video_token
75
+ self.image_token_id = (
76
+ tokenizer.image_token_id
77
+ if getattr(tokenizer, "image_token_id", None)
78
+ else tokenizer.convert_tokens_to_ids(self.image_token)
79
+ )
80
+ self.video_token_id = (
81
+ tokenizer.video_token_id
82
+ if getattr(tokenizer, "video_token_id", None)
83
+ else tokenizer.convert_tokens_to_ids(self.video_token)
84
+ )
85
+ self.vision_aspect_ratio = vision_aspect_ratio
86
+ super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template)
87
+
88
+ def __call__(
89
+ self,
90
+ images: ImageInput = None,
91
+ text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
92
+ audio=None,
93
+ videos=None,
94
+ **kwargs: Unpack[RProcessorKwargs],
95
+ ) -> BatchFeature:
96
+ output_kwargs = self._merge_kwargs(
97
+ RProcessorKwargs,
98
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
99
+ **kwargs,
100
+ )
101
+
102
+ if isinstance(text, str):
103
+ text = [text]
104
+ elif not isinstance(text, list) and not isinstance(text[0], str):
105
+ raise ValueError("Invalid input text. Please provide a string, or a list of strings")
106
+
107
+ image_inputs = video_inputs = {}
108
+
109
+ if images is not None:
110
+ image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
111
+
112
+ batch_num_images = iter(image_inputs["batch_num_images"])
113
+ image_sizes = iter(image_inputs["image_sizes"])
114
+ height, width = get_image_size(
115
+ to_numpy_array(image_inputs["pixel_values"][0][0]),
116
+ channel_dim=output_kwargs["images_kwargs"].get("data_format"),
117
+ )
118
+ text, num_image_tokens = self._expand_image_tokens(
119
+ text, image_sizes, height, width, self.image_token, batch_num_images
120
+ )
121
+
122
+ if videos is not None:
123
+ video_inputs = self.video_processor(videos, **output_kwargs["videos_kwargs"])
124
+
125
+ one_video = video_inputs.get("pixel_values_videos")[0]
126
+ if isinstance(video_inputs.get("pixel_values_videos")[0], (list, tuple)):
127
+ one_video = np.array(one_video)
128
+ else:
129
+ one_video = to_numpy_array(one_video)
130
+ height, width = get_image_size(one_video[0], channel_dim=output_kwargs["images_kwargs"].get("data_format"))
131
+ num_frames = one_video.shape[0] # frame dim is always after batch dim
132
+ patches_height_width = int(math.sqrt(self.num_image_tokens))
133
+ pooled_height_width = math.ceil(patches_height_width / 2)
134
+ num_video_tokens = (num_frames * pooled_height_width * pooled_height_width) + 1 # +1 for newline token
135
+ text = [sample.replace(self.video_token, self.video_token * num_video_tokens) for sample in text]
136
+
137
+ return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
138
+
139
+ text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
140
+ self._check_special_mm_tokens(text, text_inputs, modalities=["image"])
141
+
142
+
143
+ return BatchFeature(data={**text_inputs, **image_inputs, **video_inputs}, tensor_type=return_tensors)
144
+
145
+ def _expand_image_tokens(
146
+ self,
147
+ text: list[TextInput],
148
+ image_sizes: Iterable[Union[list[int], int]],
149
+ height: int,
150
+ width: int,
151
+ special_token: str,
152
+ batch_num_images: Iterable[int],
153
+ ):
154
+
155
+ prompt_strings = []
156
+ max_num_vision_tokens = 0
157
+ for sample in text:
158
+ if special_token in sample:
159
+ is_multi_image = next(batch_num_images) != 1
160
+ else:
161
+ is_multi_image = False
162
+ while special_token in sample:
163
+ if is_multi_image:
164
+ num_image_tokens = self.num_image_tokens + 1 # one for image_newline
165
+ else:
166
+ original_size = next(image_sizes)
167
+ if not isinstance(original_size, (list, tuple)):
168
+ # cast to list to avoid numerical precision errors when calculating unpadding
169
+ original_size = original_size.tolist()
170
+ orig_height, orig_width = original_size
171
+ num_image_tokens = self._get_number_of_features(orig_height, orig_width, height, width)
172
+ max_num_vision_tokens = max(max_num_vision_tokens, num_image_tokens)
173
+ if self.vision_feature_select_strategy == "default":
174
+ num_image_tokens -= 1
175
+ sample = sample.replace(special_token, "<placeholder>" * num_image_tokens, 1)
176
+ prompt_strings.append(sample)
177
+ text = [sample.replace("<placeholder>", special_token) for sample in prompt_strings]
178
+ return text, max_num_vision_tokens
179
+
180
+ def _get_number_of_features(self, orig_height: int, orig_width: int, height: int, width: int) -> int:
181
+ image_grid_pinpoints = self.image_processor.image_grid_pinpoints
182
+
183
+ height_best_resolution, width_best_resolution = select_best_resolution(
184
+ [orig_height, orig_width], image_grid_pinpoints
185
+ )
186
+ scale_height, scale_width = height_best_resolution // height, width_best_resolution // width
187
+
188
+ patches_height = patches_width = int(math.sqrt(self.num_image_tokens))
189
+ unpadded_features, newline_features = self._get_unpadded_features(
190
+ orig_height, orig_width, patches_height, patches_width, scale_height, scale_width
191
+ )
192
+
193
+ # The base patch covers the entire image (no CLS for SigLIP)
194
+ base_features = self.num_image_tokens
195
+ num_image_tokens = unpadded_features + newline_features + base_features
196
+ return num_image_tokens
197
+
198
+ # Adapted from transformers.models.llava_next.processing_llava_next.LlavaNextProcessor._get_unpadded_features
199
+ def _get_unpadded_features(self, height, width, patches_height, patches_width, scale_height, scale_width):
200
+ current_height = patches_height * scale_height
201
+ current_width = patches_width * scale_width
202
+
203
+ original_aspect_ratio = width / height
204
+ current_aspect_ratio = current_width / current_height
205
+ if original_aspect_ratio > current_aspect_ratio:
206
+ new_height = int(round(height * (current_width / width), 7))
207
+ padding = (current_height - new_height) // 2
208
+ current_height -= padding * 2
209
+ else:
210
+ new_width = int(round(width * (current_height / height), 7))
211
+ padding = (current_width - new_width) // 2
212
+ current_width -= padding * 2
213
+
214
+ unpadded_features = current_height * current_width
215
+ newline_features = current_height
216
+
217
+ return (unpadded_features, newline_features)
218
+
219
+
220
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
221
+ def batch_decode(self, *args, **kwargs):
222
+ """
223
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
224
+ refer to the docstring of this method for more information.
225
+ """
226
+ return self.tokenizer.batch_decode(*args, **kwargs)
227
+
228
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
229
+ def decode(self, *args, **kwargs):
230
+ """
231
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
232
+ the docstring of this method for more information.
233
+ """
234
+ return self.tokenizer.decode(*args, **kwargs)
235
+
236
+ @property
237
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
238
+ def model_input_names(self):
239
+ tokenizer_input_names = self.tokenizer.model_input_names
240
+ image_processor_input_names = self.image_processor.model_input_names
241
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
242
+
243
+
244
+ __all__ = ["RProcessor"]
processor_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "image_token": "<image>",
3
+ "num_image_tokens": 729,
4
+ "processor_class": "RProcessor",
5
+ "auto_map": {
6
+ "AutoProcessor": "processing_r.RProcessor",
7
+ "AutoImageProcessor": "image_processing_r.RImageProcessor"
8
+ },
9
+ "video_token": "<video>",
10
+ "vision_aspect_ratio": "anyres",
11
+ "vision_feature_select_strategy": "full"
12
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6a4e9901c580f8acc48cdbd2618c3b0ec673dcb91d44b555171844c707f28d2
3
+ size 11423022
tokenizer_config.json ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "151669": {
214
+ "content": "<image>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "151670": {
222
+ "content": "<video>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ }
229
+ },
230
+ "additional_special_tokens": [
231
+ "<|im_start|>",
232
+ "<|im_end|>",
233
+ "<|object_ref_start|>",
234
+ "<|object_ref_end|>",
235
+ "<|box_start|>",
236
+ "<|box_end|>",
237
+ "<|quad_start|>",
238
+ "<|quad_end|>",
239
+ "<|vision_start|>",
240
+ "<|vision_end|>",
241
+ "<|vision_pad|>",
242
+ "<|image_pad|>",
243
+ "<|video_pad|>"
244
+ ],
245
+ "bos_token": null,
246
+ "clean_up_tokenization_spaces": false,
247
+ "eos_token": "<|im_end|>",
248
+ "errors": "replace",
249
+ "extra_special_tokens": {},
250
+ "model_max_length": 131072,
251
+ "pad_token": "<|endoftext|>",
252
+ "processor_class": "processing_r.RProcessor",
253
+ "split_special_tokens": false,
254
+ "tokenizer_class": "Qwen2Tokenizer",
255
+ "unk_token": null
256
+ }
video_preprocessor_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_pad": true,
5
+ "do_rescale": true,
6
+ "do_resize": true,
7
+ "image_mean": [
8
+ 0.5,
9
+ 0.5,
10
+ 0.5
11
+ ],
12
+ "video_processor_type": "LlavaOnevisionVideoProcessor",
13
+ "image_std": [
14
+ 0.5,
15
+ 0.5,
16
+ 0.5
17
+ ],
18
+ "processor_class": "LlavaOnevisionProcessor",
19
+ "resample": 3,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 384,
23
+ "width": 384
24
+ }
25
+ }
26
+
vocab.json ADDED
The diff for this file is too large to render. See raw diff