Delete checkpoints
Browse files
fr/unit2/langgraph/.ipynb_checkpoints/agent-checkpoint.ipynb
DELETED
|
@@ -1,326 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "markdown",
|
| 5 |
-
"id": "89791f21c171372a",
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"source": [
|
| 8 |
-
"# Agent\n",
|
| 9 |
-
"\n",
|
| 10 |
-
"Dans ce *notebook*, **nous allons construire un agent simple en utilisant LangGraph**.\n",
|
| 11 |
-
"\n",
|
| 12 |
-
"Ce notebook fait parti du cours <a href=\"https://huggingface.co/learn/agents-course/fr\">sur les agents d'Hugging Face</a>, un cours gratuit qui vous guidera, du **niveau débutant à expert**, pour comprendre, utiliser et construire des agents.\n",
|
| 13 |
-
"\n",
|
| 14 |
-
"\n",
|
| 15 |
-
"Comme nous l'avons vu dans l'Unité 1, un agent a besoin de 3 étapes telles qu'introduites dans l'architecture ReAct :\n",
|
| 16 |
-
"[ReAct](https://react-lm.github.io/), une architecture générale d'agent.\n",
|
| 17 |
-
"\n",
|
| 18 |
-
"* `act` - laisser le modèle appeler des outils spécifiques\n",
|
| 19 |
-
"* `observe` - transmettre la sortie de l'outil au modèle\n",
|
| 20 |
-
"* `reason` - permet au modèle de raisonner sur la sortie de l'outil pour décider de ce qu'il doit faire ensuite (par exemple, appeler un autre outil ou simplement répondre directement).\n",
|
| 21 |
-
"\n",
|
| 22 |
-
""
|
| 23 |
-
]
|
| 24 |
-
},
|
| 25 |
-
{
|
| 26 |
-
"cell_type": "code",
|
| 27 |
-
"execution_count": null,
|
| 28 |
-
"id": "bef6c5514bd263ce",
|
| 29 |
-
"metadata": {},
|
| 30 |
-
"outputs": [],
|
| 31 |
-
"source": [
|
| 32 |
-
"%pip install -q -U langchain_openai langchain_core langgraph"
|
| 33 |
-
]
|
| 34 |
-
},
|
| 35 |
-
{
|
| 36 |
-
"cell_type": "code",
|
| 37 |
-
"execution_count": null,
|
| 38 |
-
"id": "61d0ed53b26fa5c6",
|
| 39 |
-
"metadata": {},
|
| 40 |
-
"outputs": [],
|
| 41 |
-
"source": [
|
| 42 |
-
"import os\n",
|
| 43 |
-
"\n",
|
| 44 |
-
"# Veuillez configurer votre propre clé\n",
|
| 45 |
-
"os.environ[\"OPENAI_API_KEY\"] = \"sk-xxxxxx\""
|
| 46 |
-
]
|
| 47 |
-
},
|
| 48 |
-
{
|
| 49 |
-
"cell_type": "code",
|
| 50 |
-
"execution_count": null,
|
| 51 |
-
"id": "a4a8bf0d5ac25a37",
|
| 52 |
-
"metadata": {},
|
| 53 |
-
"outputs": [],
|
| 54 |
-
"source": [
|
| 55 |
-
"import base64\n",
|
| 56 |
-
"from langchain_core.messages import HumanMessage\n",
|
| 57 |
-
"from langchain_openai import ChatOpenAI\n",
|
| 58 |
-
"\n",
|
| 59 |
-
"vision_llm = ChatOpenAI(model=\"gpt-4o\")\n",
|
| 60 |
-
"\n",
|
| 61 |
-
"\n",
|
| 62 |
-
"def extract_text(img_path: str) -> str:\n",
|
| 63 |
-
" \"\"\"\n",
|
| 64 |
-
" Extract text from an image file using a multimodal model.\n",
|
| 65 |
-
"\n",
|
| 66 |
-
" Args:\n",
|
| 67 |
-
" img_path: A local image file path (strings).\n",
|
| 68 |
-
"\n",
|
| 69 |
-
" Returns:\n",
|
| 70 |
-
" A single string containing the concatenated text extracted from each image.\n",
|
| 71 |
-
" \"\"\"\n",
|
| 72 |
-
" all_text = \"\"\n",
|
| 73 |
-
" try:\n",
|
| 74 |
-
"\n",
|
| 75 |
-
" # Lire l'image et l'encoder en base64\n",
|
| 76 |
-
" with open(img_path, \"rb\") as image_file:\n",
|
| 77 |
-
" image_bytes = image_file.read()\n",
|
| 78 |
-
"\n",
|
| 79 |
-
" image_base64 = base64.b64encode(image_bytes).decode(\"utf-8\")\n",
|
| 80 |
-
"\n",
|
| 81 |
-
" # Préparer le prompt en incluant les données de l'image base64\n",
|
| 82 |
-
" message = [\n",
|
| 83 |
-
" HumanMessage(\n",
|
| 84 |
-
" content=[\n",
|
| 85 |
-
" {\n",
|
| 86 |
-
" \"type\": \"text\",\n",
|
| 87 |
-
" \"text\": (\n",
|
| 88 |
-
" \"Extract all the text from this image. \"\n",
|
| 89 |
-
" \"Return only the extracted text, no explanations.\"\n",
|
| 90 |
-
" ),\n",
|
| 91 |
-
" },\n",
|
| 92 |
-
" {\n",
|
| 93 |
-
" \"type\": \"image_url\",\n",
|
| 94 |
-
" \"image_url\": {\n",
|
| 95 |
-
" \"url\": f\"data:image/png;base64,{image_base64}\"\n",
|
| 96 |
-
" },\n",
|
| 97 |
-
" },\n",
|
| 98 |
-
" ]\n",
|
| 99 |
-
" )\n",
|
| 100 |
-
" ]\n",
|
| 101 |
-
"\n",
|
| 102 |
-
" # Appeler le VLM\n",
|
| 103 |
-
" response = vision_llm.invoke(message)\n",
|
| 104 |
-
"\n",
|
| 105 |
-
" # Ajouter le texte extrait\n",
|
| 106 |
-
" all_text += response.content + \"\\n\\n\"\n",
|
| 107 |
-
"\n",
|
| 108 |
-
" return all_text.strip()\n",
|
| 109 |
-
" except Exception as e:\n",
|
| 110 |
-
" # Vous pouvez choisir de renvoyer une chaîne vide ou un message d'erreur.\n",
|
| 111 |
-
" error_msg = f\"Error extracting text: {str(e)}\"\n",
|
| 112 |
-
" print(error_msg)\n",
|
| 113 |
-
" return \"\"\n",
|
| 114 |
-
"\n",
|
| 115 |
-
"\n",
|
| 116 |
-
"llm = ChatOpenAI(model=\"gpt-4o\")\n",
|
| 117 |
-
"\n",
|
| 118 |
-
"\n",
|
| 119 |
-
"def divide(a: int, b: int) -> float:\n",
|
| 120 |
-
" \"\"\"Divide a and b.\"\"\"\n",
|
| 121 |
-
" return a / b\n",
|
| 122 |
-
"\n",
|
| 123 |
-
"\n",
|
| 124 |
-
"tools = [\n",
|
| 125 |
-
" divide,\n",
|
| 126 |
-
" extract_text\n",
|
| 127 |
-
"]\n",
|
| 128 |
-
"llm_with_tools = llm.bind_tools(tools, parallel_tool_calls=False)"
|
| 129 |
-
]
|
| 130 |
-
},
|
| 131 |
-
{
|
| 132 |
-
"cell_type": "markdown",
|
| 133 |
-
"id": "3e7c17a2e155014e",
|
| 134 |
-
"metadata": {},
|
| 135 |
-
"source": [
|
| 136 |
-
"Créons notre LLM et demandons-lui le comportement global souhaité de l'agent."
|
| 137 |
-
]
|
| 138 |
-
},
|
| 139 |
-
{
|
| 140 |
-
"cell_type": "code",
|
| 141 |
-
"execution_count": null,
|
| 142 |
-
"id": "f31250bc1f61da81",
|
| 143 |
-
"metadata": {},
|
| 144 |
-
"outputs": [],
|
| 145 |
-
"source": [
|
| 146 |
-
"from typing import TypedDict, Annotated, Optional\n",
|
| 147 |
-
"from langchain_core.messages import AnyMessage\n",
|
| 148 |
-
"from langgraph.graph.message import add_messages\n",
|
| 149 |
-
"\n",
|
| 150 |
-
"\n",
|
| 151 |
-
"class AgentState(TypedDict):\n",
|
| 152 |
-
" # Le document d'entrée\n",
|
| 153 |
-
" input_file: Optional[str] # Contient le chemin d'accès au fichier, le type (PNG)\n",
|
| 154 |
-
" messages: Annotated[list[AnyMessage], add_messages]"
|
| 155 |
-
]
|
| 156 |
-
},
|
| 157 |
-
{
|
| 158 |
-
"cell_type": "code",
|
| 159 |
-
"execution_count": null,
|
| 160 |
-
"id": "3c4a736f9e55afa9",
|
| 161 |
-
"metadata": {},
|
| 162 |
-
"outputs": [],
|
| 163 |
-
"source": [
|
| 164 |
-
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
| 165 |
-
"from langchain_core.utils.function_calling import convert_to_openai_tool\n",
|
| 166 |
-
"\n",
|
| 167 |
-
"\n",
|
| 168 |
-
"def assistant(state: AgentState):\n",
|
| 169 |
-
" # Message système\n",
|
| 170 |
-
" textual_description_of_tool = \"\"\"\n",
|
| 171 |
-
"extract_text(img_path: str) -> str:\n",
|
| 172 |
-
" Extract text from an image file using a multimodal model.\n",
|
| 173 |
-
"\n",
|
| 174 |
-
" Args:\n",
|
| 175 |
-
" img_path: A local image file path (strings).\n",
|
| 176 |
-
"\n",
|
| 177 |
-
" Returns:\n",
|
| 178 |
-
" A single string containing the concatenated text extracted from each image.\n",
|
| 179 |
-
"divide(a: int, b: int) -> float:\n",
|
| 180 |
-
" Divide a and b\n",
|
| 181 |
-
"\"\"\"\n",
|
| 182 |
-
" image = state[\"input_file\"]\n",
|
| 183 |
-
" sys_msg = SystemMessage(content=f\"You are an helpful agent that can analyse some images and run some computatio without provided tools :\\n{textual_description_of_tool} \\n You have access to some otpional images. Currently the loaded images is : {image}\")\n",
|
| 184 |
-
"\n",
|
| 185 |
-
" return {\"messages\": [llm_with_tools.invoke([sys_msg] + state[\"messages\"])], \"input_file\": state[\"input_file\"]}"
|
| 186 |
-
]
|
| 187 |
-
},
|
| 188 |
-
{
|
| 189 |
-
"cell_type": "markdown",
|
| 190 |
-
"id": "6f1efedd943d8b1d",
|
| 191 |
-
"metadata": {},
|
| 192 |
-
"source": [
|
| 193 |
-
"Nous définissons un nœud `tools` avec notre liste d'outils.\n",
|
| 194 |
-
"\n",
|
| 195 |
-
"Le noeud `assistant` est juste notre modèle avec les outils liés.\n",
|
| 196 |
-
"\n",
|
| 197 |
-
"Nous créons un graphe avec les noeuds `assistant` et `tools`.\n",
|
| 198 |
-
"\n",
|
| 199 |
-
"Nous ajoutons l'arête `tools_condition`, qui route vers `End` ou vers `tools` selon que le `assistant` appelle ou non un outil.\n",
|
| 200 |
-
"\n",
|
| 201 |
-
"Maintenant, nous ajoutons une nouvelle étape :\n",
|
| 202 |
-
"\n",
|
| 203 |
-
"Nous connectons le noeud `tools` au `assistant`, formant une boucle.\n",
|
| 204 |
-
"\n",
|
| 205 |
-
"* Après l'exécution du noeud `assistant`, `tools_condition` vérifie si la sortie du modèle est un appel d'outil.\n",
|
| 206 |
-
"* Si c'est le cas, le flux est dirigé vers le noeud `tools`.\n",
|
| 207 |
-
"* Le noeud `tools` se connecte à `assistant`.\n",
|
| 208 |
-
"* Cette boucle continue tant que le modèle décide d'appeler des outils.\n",
|
| 209 |
-
"* Si la réponse du modèle n'est pas un appel d'outil, le flux est dirigé vers END, mettant fin au processus."
|
| 210 |
-
]
|
| 211 |
-
},
|
| 212 |
-
{
|
| 213 |
-
"cell_type": "code",
|
| 214 |
-
"execution_count": null,
|
| 215 |
-
"id": "e013061de784638a",
|
| 216 |
-
"metadata": {},
|
| 217 |
-
"outputs": [],
|
| 218 |
-
"source": [
|
| 219 |
-
"from langgraph.graph import START, StateGraph\n",
|
| 220 |
-
"from langgraph.prebuilt import ToolNode, tools_condition\n",
|
| 221 |
-
"from IPython.display import Image, display\n",
|
| 222 |
-
"\n",
|
| 223 |
-
"# Graphe\n",
|
| 224 |
-
"builder = StateGraph(AgentState)\n",
|
| 225 |
-
"\n",
|
| 226 |
-
"# Définir les nœuds : ce sont eux qui font le travail\n",
|
| 227 |
-
"builder.add_node(\"assistant\", assistant)\n",
|
| 228 |
-
"builder.add_node(\"tools\", ToolNode(tools))\n",
|
| 229 |
-
"\n",
|
| 230 |
-
"# Définir les arêtes : elles déterminent la manière dont le flux de contrôle se déplace\n",
|
| 231 |
-
"builder.add_edge(START, \"assistant\")\n",
|
| 232 |
-
"builder.add_conditional_edges(\n",
|
| 233 |
-
" \"assistant\",\n",
|
| 234 |
-
" # Si le dernier message (résultat) de l'assistant est un appel d'outil -> tools_condition va vers tools\n",
|
| 235 |
-
" # Si le dernier message (résultat) de l'assistant n'est pas un appel d'outil -> tools_condition va à END\n",
|
| 236 |
-
" tools_condition,\n",
|
| 237 |
-
")\n",
|
| 238 |
-
"builder.add_edge(\"tools\", \"assistant\")\n",
|
| 239 |
-
"react_graph = builder.compile()\n",
|
| 240 |
-
"\n",
|
| 241 |
-
"# Afficher\n",
|
| 242 |
-
"display(Image(react_graph.get_graph(xray=True).draw_mermaid_png()))"
|
| 243 |
-
]
|
| 244 |
-
},
|
| 245 |
-
{
|
| 246 |
-
"cell_type": "code",
|
| 247 |
-
"execution_count": null,
|
| 248 |
-
"id": "d3b0ba5be1a54aad",
|
| 249 |
-
"metadata": {},
|
| 250 |
-
"outputs": [],
|
| 251 |
-
"source": [
|
| 252 |
-
"messages = [HumanMessage(content=\"Divide 6790 by 5\")]\n",
|
| 253 |
-
"\n",
|
| 254 |
-
"messages = react_graph.invoke({\"messages\": messages, \"input_file\": None})"
|
| 255 |
-
]
|
| 256 |
-
},
|
| 257 |
-
{
|
| 258 |
-
"cell_type": "code",
|
| 259 |
-
"execution_count": null,
|
| 260 |
-
"id": "55eb0f1afd096731",
|
| 261 |
-
"metadata": {},
|
| 262 |
-
"outputs": [],
|
| 263 |
-
"source": [
|
| 264 |
-
"for m in messages['messages']:\n",
|
| 265 |
-
" m.pretty_print()"
|
| 266 |
-
]
|
| 267 |
-
},
|
| 268 |
-
{
|
| 269 |
-
"cell_type": "markdown",
|
| 270 |
-
"id": "e0062c1b99cb4779",
|
| 271 |
-
"metadata": {},
|
| 272 |
-
"source": [
|
| 273 |
-
"## Programme d'entraînement\n",
|
| 274 |
-
"M. Wayne a laissé une note avec son programme d'entraînement pour la semaine. J'ai trouvé une recette pour le dîner, laissée dans une note.\n",
|
| 275 |
-
"\n",
|
| 276 |
-
"Vous pouvez trouver le document [ICI](https://huggingface.co/datasets/agents-course/course-images/blob/main/en/unit2/LangGraph/Batman_training_and_meals.png), alors téléchargez-le et mettez-le dans le dossier local.\n",
|
| 277 |
-
"\n",
|
| 278 |
-
""
|
| 279 |
-
]
|
| 280 |
-
},
|
| 281 |
-
{
|
| 282 |
-
"cell_type": "code",
|
| 283 |
-
"execution_count": null,
|
| 284 |
-
"id": "2e166ebba82cfd2a",
|
| 285 |
-
"metadata": {},
|
| 286 |
-
"outputs": [],
|
| 287 |
-
"source": [
|
| 288 |
-
"messages = [HumanMessage(content=\"According the note provided by MR wayne in the provided images. What's the list of items I should buy for the dinner menu ?\")]\n",
|
| 289 |
-
"\n",
|
| 290 |
-
"messages = react_graph.invoke({\"messages\": messages, \"input_file\": \"Batman_training_and_meals.png\"})"
|
| 291 |
-
]
|
| 292 |
-
},
|
| 293 |
-
{
|
| 294 |
-
"cell_type": "code",
|
| 295 |
-
"execution_count": null,
|
| 296 |
-
"id": "5bfd67af70b7dcf3",
|
| 297 |
-
"metadata": {},
|
| 298 |
-
"outputs": [],
|
| 299 |
-
"source": [
|
| 300 |
-
"for m in messages['messages']:\n",
|
| 301 |
-
" m.pretty_print()"
|
| 302 |
-
]
|
| 303 |
-
}
|
| 304 |
-
],
|
| 305 |
-
"metadata": {
|
| 306 |
-
"kernelspec": {
|
| 307 |
-
"display_name": "Python 3 (ipykernel)",
|
| 308 |
-
"language": "python",
|
| 309 |
-
"name": "python3"
|
| 310 |
-
},
|
| 311 |
-
"language_info": {
|
| 312 |
-
"codemirror_mode": {
|
| 313 |
-
"name": "ipython",
|
| 314 |
-
"version": 3
|
| 315 |
-
},
|
| 316 |
-
"file_extension": ".py",
|
| 317 |
-
"mimetype": "text/x-python",
|
| 318 |
-
"name": "python",
|
| 319 |
-
"nbconvert_exporter": "python",
|
| 320 |
-
"pygments_lexer": "ipython3",
|
| 321 |
-
"version": "3.12.7"
|
| 322 |
-
}
|
| 323 |
-
},
|
| 324 |
-
"nbformat": 4,
|
| 325 |
-
"nbformat_minor": 5
|
| 326 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fr/unit2/langgraph/.ipynb_checkpoints/mail_sorting-checkpoint.ipynb
DELETED
|
@@ -1,457 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "markdown",
|
| 5 |
-
"metadata": {},
|
| 6 |
-
"source": [
|
| 7 |
-
"# Alfred, le majordome chargé de trier le courrier : Un exemple de LangGraph\n",
|
| 8 |
-
"\n",
|
| 9 |
-
"Dans ce *notebook*, **nous allons construire un *workflow* complet pour le traitement des emails en utilisant LangGraph**.\n",
|
| 10 |
-
"\n",
|
| 11 |
-
"Ce notebook fait parti du cours <a href=\"https://huggingface.co/learn/agents-course/fr\">sur les agents d'Hugging Face</a>, un cours gratuit qui vous guidera, du **niveau débutant à expert**, pour comprendre, utiliser et construire des agents.\n",
|
| 12 |
-
"\n",
|
| 13 |
-
"\n",
|
| 14 |
-
"\n",
|
| 15 |
-
"## Ce que vous allez apprendre\n",
|
| 16 |
-
"\n",
|
| 17 |
-
"Dans ce *notebook*, vous apprendrez à :\n",
|
| 18 |
-
"1. Mettre en place un *workflow* LangGraph\n",
|
| 19 |
-
"2. Définir l'état et les nœuds pour le traitement des emails\n",
|
| 20 |
-
"3. Créer un branchement conditionnel dans un graphe\n",
|
| 21 |
-
"4. Connecter un LLM pour la classification et la génération de contenu\n",
|
| 22 |
-
"5. Visualiser le graphe du *workflow*\n",
|
| 23 |
-
"6. Exécuter le *workflow* avec des données d'exemple"
|
| 24 |
-
]
|
| 25 |
-
},
|
| 26 |
-
{
|
| 27 |
-
"cell_type": "code",
|
| 28 |
-
"execution_count": null,
|
| 29 |
-
"metadata": {},
|
| 30 |
-
"outputs": [],
|
| 31 |
-
"source": [
|
| 32 |
-
"# Installer les paquets nécessaires\n",
|
| 33 |
-
"%pip install -q langgraph langchain_openai langchain_huggingface"
|
| 34 |
-
]
|
| 35 |
-
},
|
| 36 |
-
{
|
| 37 |
-
"cell_type": "markdown",
|
| 38 |
-
"metadata": {},
|
| 39 |
-
"source": [
|
| 40 |
-
"## Configuration de notre environnement\n",
|
| 41 |
-
"\n",
|
| 42 |
-
"Tout d'abord, importons toutes les bibliothèques nécessaires. LangGraph fournit la structure du graphe, tandis que LangChain offre des interfaces pratiques pour travailler avec les LLM."
|
| 43 |
-
]
|
| 44 |
-
},
|
| 45 |
-
{
|
| 46 |
-
"cell_type": "code",
|
| 47 |
-
"execution_count": null,
|
| 48 |
-
"metadata": {},
|
| 49 |
-
"outputs": [],
|
| 50 |
-
"source": [
|
| 51 |
-
"import os\n",
|
| 52 |
-
"from typing import TypedDict, List, Dict, Any, Optional\n",
|
| 53 |
-
"from langgraph.graph import StateGraph, START, END\n",
|
| 54 |
-
"from langchain_openai import ChatOpenAI\n",
|
| 55 |
-
"from langchain_core.messages import HumanMessage\n",
|
| 56 |
-
"\n",
|
| 57 |
-
"# Définissez votre clé API OpenAI ici\n",
|
| 58 |
-
"os.environ[\"OPENAI_API_KEY\"] = \"sk-xxxxx\" # Remplacer par votre clé API\n",
|
| 59 |
-
"\n",
|
| 60 |
-
"# Initialiser notre LLM\n",
|
| 61 |
-
"model = ChatOpenAI(model=\"gpt-4o\", temperature=0)"
|
| 62 |
-
]
|
| 63 |
-
},
|
| 64 |
-
{
|
| 65 |
-
"cell_type": "markdown",
|
| 66 |
-
"metadata": {},
|
| 67 |
-
"source": [
|
| 68 |
-
"## Étape 1 : Définir notre état\n",
|
| 69 |
-
"\n",
|
| 70 |
-
"Dans LangGraph, **State** est le concept central. Il représente toutes les informations qui circulent dans notre *workflow*.\n",
|
| 71 |
-
"\n",
|
| 72 |
-
"Pour le système de traitement des emails d'Alfred, nous devons suivre :\n",
|
| 73 |
-
"- L'email en cours de traitement\n",
|
| 74 |
-
"- S'il s'agit d'un spam ou non\n",
|
| 75 |
-
"- Le projet de réponse (pour les courriels légitimes)\n",
|
| 76 |
-
"- L'historique de la conversation avec le LLM"
|
| 77 |
-
]
|
| 78 |
-
},
|
| 79 |
-
{
|
| 80 |
-
"cell_type": "code",
|
| 81 |
-
"execution_count": null,
|
| 82 |
-
"metadata": {},
|
| 83 |
-
"outputs": [],
|
| 84 |
-
"source": [
|
| 85 |
-
"class EmailState(TypedDict):\n",
|
| 86 |
-
" email: Dict[str, Any]\n",
|
| 87 |
-
" is_spam: Optional[bool]\n",
|
| 88 |
-
" spam_reason: Optional[str]\n",
|
| 89 |
-
" email_category: Optional[str]\n",
|
| 90 |
-
" email_draft: Optional[str]\n",
|
| 91 |
-
" messages: List[Dict[str, Any]]"
|
| 92 |
-
]
|
| 93 |
-
},
|
| 94 |
-
{
|
| 95 |
-
"cell_type": "markdown",
|
| 96 |
-
"metadata": {},
|
| 97 |
-
"source": [
|
| 98 |
-
"## Étape 2 : Définir nos nœuds"
|
| 99 |
-
]
|
| 100 |
-
},
|
| 101 |
-
{
|
| 102 |
-
"cell_type": "code",
|
| 103 |
-
"execution_count": null,
|
| 104 |
-
"metadata": {},
|
| 105 |
-
"outputs": [],
|
| 106 |
-
"source": [
|
| 107 |
-
"def read_email(state: EmailState):\n",
|
| 108 |
-
" email = state[\"email\"]\n",
|
| 109 |
-
" print(f\"Alfred is processing an email from {email['sender']} with subject: {email['subject']}\")\n",
|
| 110 |
-
" return {}\n",
|
| 111 |
-
"\n",
|
| 112 |
-
"\n",
|
| 113 |
-
"def classify_email(state: EmailState):\n",
|
| 114 |
-
" email = state[\"email\"]\n",
|
| 115 |
-
"\n",
|
| 116 |
-
" prompt = f\"\"\"\n",
|
| 117 |
-
"As Alfred the butler of Mr wayne and it's SECRET identity Batman, analyze this email and determine if it is spam or legitimate and should be brought to Mr wayne's attention.\n",
|
| 118 |
-
"\n",
|
| 119 |
-
"Email:\n",
|
| 120 |
-
"From: {email['sender']}\n",
|
| 121 |
-
"Subject: {email['subject']}\n",
|
| 122 |
-
"Body: {email['body']}\n",
|
| 123 |
-
"\n",
|
| 124 |
-
"First, determine if this email is spam.\n",
|
| 125 |
-
"answer with SPAM or HAM if it's legitimate. Only return the answer\n",
|
| 126 |
-
"Answer :\n",
|
| 127 |
-
" \"\"\"\n",
|
| 128 |
-
" messages = [HumanMessage(content=prompt)]\n",
|
| 129 |
-
" response = model.invoke(messages)\n",
|
| 130 |
-
"\n",
|
| 131 |
-
" response_text = response.content.lower()\n",
|
| 132 |
-
" print(response_text)\n",
|
| 133 |
-
" is_spam = \"spam\" in response_text and \"ham\" not in response_text\n",
|
| 134 |
-
"\n",
|
| 135 |
-
" if not is_spam:\n",
|
| 136 |
-
" new_messages = state.get(\"messages\", []) + [\n",
|
| 137 |
-
" {\"role\": \"user\", \"content\": prompt},\n",
|
| 138 |
-
" {\"role\": \"assistant\", \"content\": response.content}\n",
|
| 139 |
-
" ]\n",
|
| 140 |
-
" else:\n",
|
| 141 |
-
" new_messages = state.get(\"messages\", [])\n",
|
| 142 |
-
"\n",
|
| 143 |
-
" return {\n",
|
| 144 |
-
" \"is_spam\": is_spam,\n",
|
| 145 |
-
" \"messages\": new_messages\n",
|
| 146 |
-
" }\n",
|
| 147 |
-
"\n",
|
| 148 |
-
"\n",
|
| 149 |
-
"def handle_spam(state: EmailState):\n",
|
| 150 |
-
" print(f\"Alfred has marked the email as spam.\")\n",
|
| 151 |
-
" print(\"The email has been moved to the spam folder.\")\n",
|
| 152 |
-
" return {}\n",
|
| 153 |
-
"\n",
|
| 154 |
-
"\n",
|
| 155 |
-
"def drafting_response(state: EmailState):\n",
|
| 156 |
-
" email = state[\"email\"]\n",
|
| 157 |
-
"\n",
|
| 158 |
-
" prompt = f\"\"\"\n",
|
| 159 |
-
"As Alfred the butler, draft a polite preliminary response to this email.\n",
|
| 160 |
-
"\n",
|
| 161 |
-
"Email:\n",
|
| 162 |
-
"From: {email['sender']}\n",
|
| 163 |
-
"Subject: {email['subject']}\n",
|
| 164 |
-
"Body: {email['body']}\n",
|
| 165 |
-
"\n",
|
| 166 |
-
"Draft a brief, professional response that Mr. Wayne can review and personalize before sending.\n",
|
| 167 |
-
" \"\"\"\n",
|
| 168 |
-
"\n",
|
| 169 |
-
" messages = [HumanMessage(content=prompt)]\n",
|
| 170 |
-
" response = model.invoke(messages)\n",
|
| 171 |
-
"\n",
|
| 172 |
-
" new_messages = state.get(\"messages\", []) + [\n",
|
| 173 |
-
" {\"role\": \"user\", \"content\": prompt},\n",
|
| 174 |
-
" {\"role\": \"assistant\", \"content\": response.content}\n",
|
| 175 |
-
" ]\n",
|
| 176 |
-
"\n",
|
| 177 |
-
" return {\n",
|
| 178 |
-
" \"email_draft\": response.content,\n",
|
| 179 |
-
" \"messages\": new_messages\n",
|
| 180 |
-
" }\n",
|
| 181 |
-
"\n",
|
| 182 |
-
"\n",
|
| 183 |
-
"def notify_mr_wayne(state: EmailState):\n",
|
| 184 |
-
" email = state[\"email\"]\n",
|
| 185 |
-
"\n",
|
| 186 |
-
" print(\"\\n\" + \"=\" * 50)\n",
|
| 187 |
-
" print(f\"Sir, you've received an email from {email['sender']}.\")\n",
|
| 188 |
-
" print(f\"Subject: {email['subject']}\")\n",
|
| 189 |
-
" print(\"\\nI've prepared a draft response for your review:\")\n",
|
| 190 |
-
" print(\"-\" * 50)\n",
|
| 191 |
-
" print(state[\"email_draft\"])\n",
|
| 192 |
-
" print(\"=\" * 50 + \"\\n\")\n",
|
| 193 |
-
"\n",
|
| 194 |
-
" return {}\n",
|
| 195 |
-
"\n",
|
| 196 |
-
"\n",
|
| 197 |
-
"# Définir la logique de routage\n",
|
| 198 |
-
"def route_email(state: EmailState) -> str:\n",
|
| 199 |
-
" if state[\"is_spam\"]:\n",
|
| 200 |
-
" return \"spam\"\n",
|
| 201 |
-
" else:\n",
|
| 202 |
-
" return \"legitimate\"\n",
|
| 203 |
-
"\n",
|
| 204 |
-
"\n",
|
| 205 |
-
"# Créer le graphe\n",
|
| 206 |
-
"email_graph = StateGraph(EmailState)\n",
|
| 207 |
-
"\n",
|
| 208 |
-
"# Ajouter des nœuds\n",
|
| 209 |
-
"email_graph.add_node(\"read_email\", read_email) # le nœud read_email exécute la fonction read_mail\n",
|
| 210 |
-
"email_graph.add_node(\"classify_email\", classify_email) # le nœud classify_email exécutera la fonction classify_email\n",
|
| 211 |
-
"email_graph.add_node(\"handle_spam\", handle_spam) # même logique\n",
|
| 212 |
-
"email_graph.add_node(\"drafting_response\", drafting_response) # même logique\n",
|
| 213 |
-
"email_graph.add_node(\"notify_mr_wayne\", notify_mr_wayne) # même logique\n"
|
| 214 |
-
]
|
| 215 |
-
},
|
| 216 |
-
{
|
| 217 |
-
"cell_type": "markdown",
|
| 218 |
-
"metadata": {},
|
| 219 |
-
"source": [
|
| 220 |
-
"## Étape 3 : Définir notre logique de routage"
|
| 221 |
-
]
|
| 222 |
-
},
|
| 223 |
-
{
|
| 224 |
-
"cell_type": "code",
|
| 225 |
-
"execution_count": null,
|
| 226 |
-
"metadata": {},
|
| 227 |
-
"outputs": [],
|
| 228 |
-
"source": [
|
| 229 |
-
"# Ajouter des arêtes\n",
|
| 230 |
-
"email_graph.add_edge(START, \"read_email\") # Après le départ, nous accédons au nœud « read_email »\n",
|
| 231 |
-
"\n",
|
| 232 |
-
"email_graph.add_edge(\"read_email\", \"classify_email\") # after_reading nous classifions\n",
|
| 233 |
-
"\n",
|
| 234 |
-
"# Ajouter des arêtes conditionnelles\n",
|
| 235 |
-
"email_graph.add_conditional_edges(\n",
|
| 236 |
-
" \"classify_email\", # après la classification, nous exécutons la fonction « route_email »\n",
|
| 237 |
-
" route_email,\n",
|
| 238 |
-
" {\n",
|
| 239 |
-
" \"spam\": \"handle_spam\", # s'il renvoie « Spam », nous allons au noeud « handle_span »\n",
|
| 240 |
-
" \"legitimate\": \"drafting_response\" # et s'il est légitime, nous passons au nœud « drafting_response »\n",
|
| 241 |
-
" }\n",
|
| 242 |
-
")\n",
|
| 243 |
-
"\n",
|
| 244 |
-
"# Ajouter les arêtes finales\n",
|
| 245 |
-
"email_graph.add_edge(\"handle_spam\", END) # après avoir traité le spam, nous terminons toujours\n",
|
| 246 |
-
"email_graph.add_edge(\"drafting_response\", \"notify_mr_wayne\")\n",
|
| 247 |
-
"email_graph.add_edge(\"notify_mr_wayne\", END) # après avoir notifié M. Wayne, nous pouvons mettre un terme à l'opération\n"
|
| 248 |
-
]
|
| 249 |
-
},
|
| 250 |
-
{
|
| 251 |
-
"cell_type": "markdown",
|
| 252 |
-
"metadata": {},
|
| 253 |
-
"source": [
|
| 254 |
-
"## Étape 4 : Créer le graphe d'état et définir les arêtes"
|
| 255 |
-
]
|
| 256 |
-
},
|
| 257 |
-
{
|
| 258 |
-
"cell_type": "code",
|
| 259 |
-
"execution_count": null,
|
| 260 |
-
"metadata": {},
|
| 261 |
-
"outputs": [],
|
| 262 |
-
"source": [
|
| 263 |
-
"# Compiler le graphique\n",
|
| 264 |
-
"compiled_graph = email_graph.compile()"
|
| 265 |
-
]
|
| 266 |
-
},
|
| 267 |
-
{
|
| 268 |
-
"cell_type": "code",
|
| 269 |
-
"execution_count": null,
|
| 270 |
-
"metadata": {},
|
| 271 |
-
"outputs": [],
|
| 272 |
-
"source": [
|
| 273 |
-
"from IPython.display import Image, display\n",
|
| 274 |
-
"\n",
|
| 275 |
-
"display(Image(compiled_graph.get_graph().draw_mermaid_png()))"
|
| 276 |
-
]
|
| 277 |
-
},
|
| 278 |
-
{
|
| 279 |
-
"cell_type": "code",
|
| 280 |
-
"execution_count": null,
|
| 281 |
-
"metadata": {},
|
| 282 |
-
"outputs": [],
|
| 283 |
-
"source": [
|
| 284 |
-
" # Exemple de courriels à tester\n",
|
| 285 |
-
"legitimate_email = {\n",
|
| 286 |
-
" \"sender\": \"Joker\",\n",
|
| 287 |
-
" \"subject\": \"Found you Batman ! \",\n",
|
| 288 |
-
" \"body\": \"Mr. Wayne,I found your secret identity ! I know you're batman ! Ther's no denying it, I have proof of that and I'm coming to find you soon. I'll get my revenge. JOKER\"\n",
|
| 289 |
-
"}\n",
|
| 290 |
-
"\n",
|
| 291 |
-
"spam_email = {\n",
|
| 292 |
-
" \"sender\": \"Crypto bro\",\n",
|
| 293 |
-
" \"subject\": \"The best investment of 2025\",\n",
|
| 294 |
-
" \"body\": \"Mr Wayne, I just launched an ALT coin and want you to buy some !\"\n",
|
| 295 |
-
"}\n",
|
| 296 |
-
"# Traiter les emails légitimes\n",
|
| 297 |
-
"print(\"\\nProcessing legitimate email...\")\n",
|
| 298 |
-
"legitimate_result = compiled_graph.invoke({\n",
|
| 299 |
-
" \"email\": legitimate_email,\n",
|
| 300 |
-
" \"is_spam\": None,\n",
|
| 301 |
-
" \"spam_reason\": None,\n",
|
| 302 |
-
" \"email_category\": None,\n",
|
| 303 |
-
" \"email_draft\": None,\n",
|
| 304 |
-
" \"messages\": []\n",
|
| 305 |
-
"})\n",
|
| 306 |
-
"\n",
|
| 307 |
-
"# Traiter les spams\n",
|
| 308 |
-
"print(\"\\nProcessing spam email...\")\n",
|
| 309 |
-
"spam_result = compiled_graph.invoke({\n",
|
| 310 |
-
" \"email\": spam_email,\n",
|
| 311 |
-
" \"is_spam\": None,\n",
|
| 312 |
-
" \"spam_reason\": None,\n",
|
| 313 |
-
" \"email_category\": None,\n",
|
| 314 |
-
" \"email_draft\": None,\n",
|
| 315 |
-
" \"messages\": []\n",
|
| 316 |
-
"})"
|
| 317 |
-
]
|
| 318 |
-
},
|
| 319 |
-
{
|
| 320 |
-
"cell_type": "markdown",
|
| 321 |
-
"metadata": {},
|
| 322 |
-
"source": [
|
| 323 |
-
"## Étape 5 : Inspection de notre agent trieur d'emails avec Langfuse 📡\n",
|
| 324 |
-
"\n",
|
| 325 |
-
"Au fur et à mesure qu'Alfred peaufine l'agent trieur d'emails, il se lasse de déboguer ses exécutions. Les agents, par nature, sont imprévisibles et difficiles à inspecter. Mais comme son objectif est de construire l'ultime agent de détection de spam et de le déployer en production, il a besoin d'une traçabilité solide pour un contrôle et une analyse ultérieurs.\n",
|
| 326 |
-
"\n",
|
| 327 |
-
"Pour ce faire, Alfred peut utiliser un outil d'observabilité tel que [Langfuse](https://langfuse.com/) pour retracer et surveiller les étapes internes de l'agent.\n",
|
| 328 |
-
"\n",
|
| 329 |
-
"Tout d'abord, nous devons installer les dépendances nécessaires :"
|
| 330 |
-
]
|
| 331 |
-
},
|
| 332 |
-
{
|
| 333 |
-
"cell_type": "code",
|
| 334 |
-
"execution_count": null,
|
| 335 |
-
"metadata": {},
|
| 336 |
-
"outputs": [],
|
| 337 |
-
"source": [
|
| 338 |
-
"%pip install -q langfuse"
|
| 339 |
-
]
|
| 340 |
-
},
|
| 341 |
-
{
|
| 342 |
-
"cell_type": "markdown",
|
| 343 |
-
"metadata": {},
|
| 344 |
-
"source": [
|
| 345 |
-
"Ensuite, nous définissons les clés de l'API Langfuse et l'adresse de l'hôte en tant que variables d'environnement. Vous pouvez obtenir vos identifiants Langfuse en vous inscrivant à [Langfuse Cloud](https://cloud.langfuse.com) ou à [Langfuse auto-hébergé](https://langfuse.com/self-hosting)."
|
| 346 |
-
]
|
| 347 |
-
},
|
| 348 |
-
{
|
| 349 |
-
"cell_type": "code",
|
| 350 |
-
"execution_count": null,
|
| 351 |
-
"metadata": {},
|
| 352 |
-
"outputs": [],
|
| 353 |
-
"source": [
|
| 354 |
-
"import os\n",
|
| 355 |
-
"\n",
|
| 356 |
-
"# Obtenez les clés de votre projet à partir de la page des paramètres du projet : https://cloud.langfuse.com\n",
|
| 357 |
-
"os.environ[\"LANGFUSE_PUBLIC_KEY\"] = \"pk-lf-...\"\n",
|
| 358 |
-
"os.environ[\"LANGFUSE_SECRET_KEY\"] = \"sk-lf-...\"\n",
|
| 359 |
-
"os.environ[\"LANGFUSE_HOST\"] = \"https://cloud.langfuse.com\" # 🇪🇺 région EU \n",
|
| 360 |
-
"# os.environ[\"LANGFUSE_HOST\"] = \"https://us.cloud.langfuse.com\" # 🇺🇸 région US"
|
| 361 |
-
]
|
| 362 |
-
},
|
| 363 |
-
{
|
| 364 |
-
"cell_type": "markdown",
|
| 365 |
-
"metadata": {},
|
| 366 |
-
"source": [
|
| 367 |
-
"Nous allons maintenant configurer le [Langfuse `callback_handler`] (https://langfuse.com/docs/integrations/langchain/tracing#add-langfuse-to-your-langchain-application)."
|
| 368 |
-
]
|
| 369 |
-
},
|
| 370 |
-
{
|
| 371 |
-
"cell_type": "code",
|
| 372 |
-
"execution_count": null,
|
| 373 |
-
"metadata": {},
|
| 374 |
-
"outputs": [],
|
| 375 |
-
"source": [
|
| 376 |
-
"from langfuse.langchain import CallbackHandler\n",
|
| 377 |
-
"\n",
|
| 378 |
-
"# Initialiser le CallbackHandler Langfuse pour LangGraph/Langchain (traçage)\n",
|
| 379 |
-
"langfuse_handler = CallbackHandler()"
|
| 380 |
-
]
|
| 381 |
-
},
|
| 382 |
-
{
|
| 383 |
-
"cell_type": "markdown",
|
| 384 |
-
"metadata": {},
|
| 385 |
-
"source": [
|
| 386 |
-
"Nous ajoutons ensuite `config={« callbacks » : [langfuse_handler]}` à l'invocation des agents et les exécutons à nouveau."
|
| 387 |
-
]
|
| 388 |
-
},
|
| 389 |
-
{
|
| 390 |
-
"cell_type": "code",
|
| 391 |
-
"execution_count": null,
|
| 392 |
-
"metadata": {},
|
| 393 |
-
"outputs": [],
|
| 394 |
-
"source": [
|
| 395 |
-
"# Traiter les emails légitimes\n",
|
| 396 |
-
"print(\"\\nProcessing legitimate email...\")\n",
|
| 397 |
-
"legitimate_result = compiled_graph.invoke(\n",
|
| 398 |
-
" input={\n",
|
| 399 |
-
" \"email\": legitimate_email,\n",
|
| 400 |
-
" \"is_spam\": None,\n",
|
| 401 |
-
" \"draft_response\": None,\n",
|
| 402 |
-
" \"messages\": []\n",
|
| 403 |
-
" },\n",
|
| 404 |
-
" config={\"callbacks\": [langfuse_handler]}\n",
|
| 405 |
-
")\n",
|
| 406 |
-
"\n",
|
| 407 |
-
"# Traiter les spams\n",
|
| 408 |
-
"print(\"\\nProcessing spam email...\")\n",
|
| 409 |
-
"spam_result = compiled_graph.invoke(\n",
|
| 410 |
-
" input={\n",
|
| 411 |
-
" \"email\": spam_email,\n",
|
| 412 |
-
" \"is_spam\": None,\n",
|
| 413 |
-
" \"draft_response\": None,\n",
|
| 414 |
-
" \"messages\": []\n",
|
| 415 |
-
" },\n",
|
| 416 |
-
" config={\"callbacks\": [langfuse_handler]}\n",
|
| 417 |
-
")"
|
| 418 |
-
]
|
| 419 |
-
},
|
| 420 |
-
{
|
| 421 |
-
"cell_type": "markdown",
|
| 422 |
-
"metadata": {},
|
| 423 |
-
"source": [
|
| 424 |
-
"Alfred est maintenant connecté 🔌 ! Les exécutions de LangGraph sont enregistrées dans Langfuse, ce qui lui donne une visibilité totale sur le comportement de l'agent. Avec cette configuration, il est prêt à revoir les exécutions précédentes et à affiner encore davantage son agent de tri du courrier.\n",
|
| 425 |
-
"\n",
|
| 426 |
-
"\n",
|
| 427 |
-
"\n",
|
| 428 |
-
"_[Lien public vers la trace avec l'email légitime](https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/f5d6d72e-20af-4357-b232-af44c3728a7b?timestamp=2025-03-17T10%3A13%3A28.413Z&observation=6997ba69-043f-4f77-9445-700a033afba1)_\n",
|
| 429 |
-
"\n",
|
| 430 |
-
"\n",
|
| 431 |
-
"\n",
|
| 432 |
-
"_[Lien public vers la trace du spam](https://langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/6e498053-fee4-41fd-b1ab-d534aca15f82?timestamp=2025-03-17T10%3A13%3A30.884Z&observation=84770fc8-4276-4720-914f-bf52738d44ba)_\n"
|
| 433 |
-
]
|
| 434 |
-
}
|
| 435 |
-
],
|
| 436 |
-
"metadata": {
|
| 437 |
-
"kernelspec": {
|
| 438 |
-
"display_name": "Python 3 (ipykernel)",
|
| 439 |
-
"language": "python",
|
| 440 |
-
"name": "python3"
|
| 441 |
-
},
|
| 442 |
-
"language_info": {
|
| 443 |
-
"codemirror_mode": {
|
| 444 |
-
"name": "ipython",
|
| 445 |
-
"version": 3
|
| 446 |
-
},
|
| 447 |
-
"file_extension": ".py",
|
| 448 |
-
"mimetype": "text/x-python",
|
| 449 |
-
"name": "python",
|
| 450 |
-
"nbconvert_exporter": "python",
|
| 451 |
-
"pygments_lexer": "ipython3",
|
| 452 |
-
"version": "3.12.7"
|
| 453 |
-
}
|
| 454 |
-
},
|
| 455 |
-
"nbformat": 4,
|
| 456 |
-
"nbformat_minor": 4
|
| 457 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|