anasse15 commited on
Commit
5229ac8
·
verified ·
1 Parent(s): 774bb6f

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,668 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:12689
8
+ - loss:TripletLossWithLogging
9
+ base_model: Alibaba-NLP/gte-modernbert-base
10
+ widget:
11
+ - source_sentence: 'Which of the following statements is true regarding the properties
12
+ of zinc-activated ion channels and quaternary carbon atoms?
13
+
14
+ A. Quaternary carbon atoms are primarily involved in the activation of zinc-activated
15
+ ion channels.
16
+
17
+ B. Both zinc-activated ion channels and quaternary carbon atoms are unique to
18
+ the rat genome.
19
+
20
+ C. Zinc-activated ion channels are cation-permeable and can activate spontaneously,
21
+ while quaternary carbon atoms are found in hydrocarbons with at least five carbon
22
+ atoms.
23
+
24
+ D. Zinc-activated ion channels are exclusively found in the human genome, while
25
+ quaternary carbon atoms can only exist in linear alkanes.'
26
+ sentences:
27
+ - "A quaternary carbon is a carbon atom bound to four other carbon atoms. For this\
28
+ \ reason, quaternary carbon atoms are found only in hydrocarbons having at least\
29
+ \ five carbon atoms. Quaternary carbon atoms can occur in branched alkanes, but\
30
+ \ not in linear alkanes.\n\nSynthesis \nThe formation of chiral quaternary carbon\
31
+ \ centers has been a synthetic challenge. Chemists have developed asymmetric Diels–Alder\
32
+ \ reactions, Heck reaction, Enyne cyclization, cycloaddition reactions, C–H activation,\
33
+ \ Allylic substitution, Pauson–Khand reaction, etc. to construct asymmetric\
34
+ \ quaternary carbons.\n\nReferences \n\nChemical nomenclature\nOrganic chemistry"
35
+ - "Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious\
36
+ \ disease caused by Dabie bandavirus also known as the SFTS virus, first reported\
37
+ \ between late March and mid-July 2009 in rural areas of Hubei and Henan provinces\
38
+ \ in Central China. SFTS has fatality rates ranging from 12% to as high as 30%\
39
+ \ in some areas. The major clinical symptoms of SFTS are fever, vomiting, diarrhea,\
40
+ \ multiple organ failure, thrombocytopenia (low platelet count), leucopenia (low\
41
+ \ white blood cell count), and elevated liver enzyme levels.\n\nVirology\nSFTS\
42
+ \ virus (SFTSV) is a virus in the order Bunyavirales. Person-to-person transmission\
43
+ \ was not noted in early reports but has since been documented.\n\nThe life cycle\
44
+ \ of the SFTSV most likely involves arthropod vectors and animal hosts. Humans\
45
+ \ appear to be largely accidental hosts. SFTSV has been detected in Haemaphysalis\
46
+ \ longicornis ticks.\n\nEpidemiology\nSFTS occurs in China's rural areas from\
47
+ \ March to November with the majority of cases from April to July. In 2013, Japan\
48
+ \ and Korea also reported several cases with deaths.\n\nIn July 2013, South Korea\
49
+ \ reported a total of eight deaths since August 2012.\n\nIn July 2017, Japanese\
50
+ \ doctors reported that a woman had died of SFTS after being bitten by a cat that\
51
+ \ may have itself infected by a tick. The woman had no visible tick bites, leading\
52
+ \ doctors to believe that the cat — which died as well — was the transmission\
53
+ \ vector.\n\nIn early 2020 an outbreak occurred in East China, more than 37 people\
54
+ \ were found with SFTS in Jiangsu province, while 23 more were found infected\
55
+ \ in Anhui province in August 2020. Seven people have died.\n\nEvolution\nThe\
56
+ \ virus originated 50–150 years ago and has undergone a recent population expansion.\n\
57
+ \nHistory\nIn 2009 Xue-jie Yu and colleagues isolated the SFTS virus (SFTSV) from\
58
+ \ SFTS patients’ blood.\n\nReferences\n\nExternal links \n\nArthropod-borne viral\
59
+ \ fevers and viral haemorrhagic fevers\nInsect-borne diseases\nZoonoses"
60
+ - "Lecticans, also known as hyalectans, are a family of proteoglycans (a type protein\
61
+ \ that is attached to chains of negatively charged polysaccharides) that are components\
62
+ \ of the extracellular matrix. There are four members of the lectican family:\
63
+ \ aggrecan, brevican, neurocan, and versican. Lecticans interact with hyaluronic\
64
+ \ acid and tenascin-R to form a ternary complex.\n\nTissue distribution \n\nAggrecan\
65
+ \ is a major component of extracellular matrix in cartilage whereas versican is\
66
+ \ widely expressed in a number of connective tissues including those in vascular\
67
+ \ smooth muscle, skin epithelial cells, and the cells of central and peripheral\
68
+ \ nervous system. The expression of neurocan and brevican is largely restricted\
69
+ \ to neural tissues.\n\nStructure \n\nAll four lecticans contain an N-terminal\
70
+ \ globular domain (G1 domain) that in turn contains an immunoglobulin V-set domain\
71
+ \ and a Link domain that binds hyaluronic acid; a long extended central domain\
72
+ \ (CS) that is modified with covalently attached sulfated glycosaminoglycan chains,\
73
+ \ and a C-terminal globular domain (G3 domain) containing of one or more EGF repeats,\
74
+ \ a C-type lectin domain and a CRP-like domain. Aggrecan has in addition a globular\
75
+ \ domain (G2 domain) that is situated between the G1 and CS domains.\n\nSee also\
76
+ \ \nHyaladherin\n\nReferences \n\nProtein families"
77
+ - source_sentence: 'What is the primary physiological process that causes the corpora
78
+ cavernosa to become engorged with blood during an erection?
79
+
80
+ A. Tumescence
81
+
82
+ B. Hyperemia
83
+
84
+ C. Contraction
85
+
86
+ D. Vasodilation'
87
+ sentences:
88
+ - 'Leukotriene D4 (LTD4) is one of the leukotrienes. Its main function in the body
89
+ is to induce the contraction of smooth muscle, resulting in bronchoconstriction
90
+ and vasoconstriction. It also increases vascular permeability. LTD4 is released
91
+ by basophils. Other leukotrienes that function in a similar manner are leukotrienes
92
+ C4 and E4. Pharmacological agents that inhibit the function of these leukotrienes
93
+ are leukotriene receptor antagonists (e.g. Zafirlukast, montelukast) and are useful
94
+ for asthmatic individuals.
95
+
96
+
97
+ References
98
+
99
+
100
+ Eicosanoids'
101
+ - "The Panasonic Lumix DMC-FZ45 (a.k.a. DMC-FZ40 in North American markets) is a\
102
+ \ superzoom bridge digital camera, replacing the similar Panasonic Lumix DMC-FZ38\
103
+ \ and earlier Panasonic Lumix DMC-FZ28. The Panasonic Lumix DMC-FZ40/FZ45 superzoom\
104
+ \ slots in where the FZ38/35 left off, featuring the same 25-600mm equiv. lens\
105
+ \ as the FZ100, but with a 14.1MP CCD sensor and simpler 230K dot 3.0 inch fixed\
106
+ \ LCD (as opposed to the FZ100's CMOS sensor and high-res screen). The FZ40 also\
107
+ \ offers AVCHD Lite 720p HD video recording, manual shooting modes and the company’s\
108
+ \ Sonic Speed auto-focus system that offers the industry's fastest focus times.\n\
109
+ \nExternal links \nSpecs on panasonic.it\nInformation regarding DMC-FZ45: https://www.dpreview.com/products/panasonic/compacts/panasonic_dmcfz40\n\
110
+ \nBridge digital cameras\nSuperzoom cameras\nFZ45"
111
+ - 'Erectile tissue is tissue in the body with numerous vascular spaces, or cavernous
112
+ tissue, that may become engorged with blood. However, tissue that is devoid of
113
+ or otherwise lacking erectile tissue (such as the labia minora, the vestibule/vagina
114
+ and the urethra) may also be described as engorging with blood, often with regard
115
+ to sexual arousal.
116
+
117
+
118
+ In the clitoris and penis
119
+
120
+
121
+ Erectile tissue exists in places such as the corpora cavernosa of the penis, and
122
+ in the clitoris or in the bulbs of vestibule. During erection, the corpora cavernosa
123
+ will become engorged with arterial blood, a process called tumescence. This may
124
+ result from any of various physiological stimuli, also known as sexual arousal.
125
+ The corpus spongiosum is a single tubular structure located just below the corpora
126
+ cavernosa. This may also become slightly engorged with blood, but less so than
127
+ the corpora cavernosa.
128
+
129
+
130
+ Other types
131
+
132
+ Erectile tissue is also found in the nose (turbinates), ear, urethral sponge and
133
+ perineal sponge. The erection of nipples is not due to erectile tissue, but rather
134
+ due to the contraction of smooth muscle under the control of the autonomic nervous
135
+ system.
136
+
137
+
138
+ References
139
+
140
+
141
+ Sexual anatomy
142
+
143
+
144
+ ru:Пещеристое тело'
145
+ - source_sentence: 'What is the primary function of the supratrochlear nerve?
146
+
147
+ A. Sensory innervation to the lower jaw
148
+
149
+ B. Motor function to the muscles of facial expression
150
+
151
+ C. Motor innervation to the superior oblique muscle
152
+
153
+ D. Sensory innervation to the skin of the forehead and upper eyelid'
154
+ sentences:
155
+ - "A lung counter is a system consisting of a radiation detector, or detectors,\
156
+ \ and associated electronics that is used to measure radiation emitted from radioactive\
157
+ \ material that has been inhaled by a person and is sufficiently insoluble as\
158
+ \ to remain in the lung for weeks, months, or years.\n\nOften, such a system is\
159
+ \ housed in a low background counting chamber whose thick walls will be made of\
160
+ \ low-background steel (~20 cm thick) and will be lined with ~1 cm of lead, then\
161
+ \ perhaps thin layers of cadmium, or tin, with a final layer of copper. The purpose\
162
+ \ of the lead, cadmium (or tin), and copper is to reduce the background in the\
163
+ \ low energy region of a gamma spectrum (typically less than 200 keV)\n\nCalibration\
164
+ \ \nAs a lung counter is primarily measuring radioactive materials that emit low\
165
+ \ energy gamma rays or x-rays, the phantom used to calibrate the system must be\
166
+ \ anthropometric. An example of such a phantom is the Lawrence Livermore National\
167
+ \ Laboratory Torso Phantom.\n\nSee also \n Bomab\n\nMedical equipment\nRadiobiology"
168
+ - "The supratrochlear nerve is a branch of the frontal nerve, itself a branch of\
169
+ \ the ophthalmic nerve (CN V1) from the trigeminal nerve (CN V). It provides sensory\
170
+ \ innervation to the skin of the forehead and the upper eyelid.\n\nStructure \n\
171
+ The supratrochlear nerve is a branch of the frontal nerve, itself a branch of\
172
+ \ the ophthalmic nerve (CN V1) from the trigeminal nerve (CN V). It is smaller\
173
+ \ than the supraorbital nerve from the frontal nerve. It branches midway between\
174
+ \ the base and apex of the orbit. It passes above the trochlea of the superior\
175
+ \ oblique muscle. It then travels anteriorly above the levator palpebrae superioris\
176
+ \ muscle. It exits the orbit through the frontal notch in the superomedial margin\
177
+ \ of the orbit. It then ascends onto the forehead beneath the corrugator supercilii\
178
+ \ muscle and frontalis muscle. It then divides into sensory branches.\n\nThe supratrochlear\
179
+ \ nerve travels with the supratrochlear artery, a branch of the ophthalmic artery.\n\
180
+ \nFunction \nThe supratrochlear nerve provides sensory innervation to the skin\
181
+ \ of the lateral lower forehead, upper eyelid, and the conjunctiva. It may also\
182
+ \ supply sensation to the periosteum of part of the frontal bone of the skull.\n\
183
+ \nClinical significance \nThe supratrochlear nerve may be anaesthetised for surgery\
184
+ \ of parts of the scalp. This can be used for small lesions of the scalp. It can\
185
+ \ also be used for more extensive injury to the scalp. It is often anaesthetised\
186
+ \ alongside the supraorbital artery.\n\nEtymology \nThe supratrochlear nerve is\
187
+ \ named for its passage above the trochlea of the superior oblique muscle.\n\n\
188
+ Additional images\n\nReferences\n\nExternal links \n \n \n ()\n ()\n http://www.dartmouth.edu/~humananatomy/figures/chapter_47/47-2.HTM\n\
189
+ \nOphthalmic nerve"
190
+ - "A Y-SNP is a single-nucleotide polymorphism on the Y chromosome. Y-SNPs are often\
191
+ \ used in paternal genealogical DNA testing.\n\nSNP markers\n\nA single nucleotide\
192
+ \ polymorphism (SNP) is a change to a single nucleotide in a DNA sequence. The\
193
+ \ relative mutation rate for an SNP is extremely low. This makes them ideal for\
194
+ \ marking the history of the human genetic tree. SNPs are named with a letter\
195
+ \ code and a number. The letter indicates the lab or research team that discovered\
196
+ \ the SNP. The number indicates the order in which it was discovered. For example\
197
+ \ M173 is the 173rd SNP documented by the Human Population Genetics Laboratory\
198
+ \ at Stanford University, which uses the letter M.\n\nSee also \nMt-SNP\nShort\
199
+ \ tandem repeat\nHaplogroup\nHaplotype\nGenealogical DNA test\n\nSingle-nucleotide\
200
+ \ polymorphisms"
201
+ - source_sentence: 'What is the primary function of the enzyme encoded by the GCNT2
202
+ gene in humans?
203
+
204
+ A. Synthesis of hemoglobin
205
+
206
+ B. Formation of the blood group I antigen
207
+
208
+ C. Conversion of glucose to glycogen
209
+
210
+ D. Degradation of fatty acids'
211
+ sentences:
212
+ - 'N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase is an enzyme
213
+ that in humans is encoded by the GCNT2 gene.
214
+
215
+
216
+ This gene encodes the enzyme responsible for formation of the blood group I antigen.
217
+ The i and I antigens are distinguished by linear and branched poly-N-acetyllactosaminoglycans,
218
+ respectively. The encoded protein is the I-branching enzyme, a beta-1,6-N-acetylglucosaminyltransferase
219
+ responsible for the conversion of fetal i antigen to adult I antigen in erythrocytes
220
+ during embryonic development. Mutations in this gene have been associated with
221
+ adult i blood group phenotype. Alternatively spliced transcript variants encoding
222
+ different isoforms have been described.
223
+
224
+
225
+ References
226
+
227
+
228
+ Further reading'
229
+ - "Telapristone (), as telapristone acetate (proposed brand names Proellex, Progenta;\
230
+ \ former code name CDB-4124), is a synthetic, steroidal selective progesterone\
231
+ \ receptor modulator (SPRM) related to mifepristone which is under development\
232
+ \ by Repros Therapeutics for the treatment of breast cancer, endometriosis, and\
233
+ \ uterine fibroids. It was originally developed by the National Institutes of\
234
+ \ Health (NIH), and, as of 2017, is in phase II clinical trials for the aforementioned\
235
+ \ indications. In addition to its activity as an SPRM, the drug also has some\
236
+ \ antiglucocorticoid activity.\n\nSee also\n List of investigational sex-hormonal\
237
+ \ agents § Progestogenics\n Aglepristone\n Lilopristone\n Onapristone\n Toripristone\n\
238
+ \nReferences\n\nExternal links\n Telapristone - AdisInsight\n\nAcetate esters\n\
239
+ Dimethylamino compounds\nAntiglucocorticoids\nEstranes\nKetones\nSelective progesterone\
240
+ \ receptor modulators"
241
+ - "Eclipse chasing is the pursuit of observing solar eclipses when they occur around\
242
+ \ the Earth. Solar eclipses must occur at least twice and as often as five times\
243
+ \ a year across the Earth. Total eclipses may occur multiple times every few years.\n\
244
+ \nA person who chases eclipses is known as a umbraphile, meaning shadow lover.\
245
+ \ Umbraphiles often travel for eclipses and use various tools to help view the\
246
+ \ sun including solar viewers also known as eclipse glasses, as well as telescopes.\n\
247
+ \nAs of 2017, three New Yorkers, Glenn Schneider, Jay Pasachoff, and John Beattie\
248
+ \ have each seen 33 total solar eclipses, the current record. Donald Liebenberg,\
249
+ \ professor of astronomy at Clemson University in South Carolina has seen 26 traveling\
250
+ \ to Turkey, Zambia, China, the Cook Islands and others.\n\nHistory\n\nIn the\
251
+ \ 19th century, Mabel Loomis Todd, an American editor and writer, and her husband\
252
+ \ David Peck Todd, a professor of astronomy at Amherst College, traveled around\
253
+ \ the world to view solar eclipses. During the solar eclipse of June 30, 1973,\
254
+ \ Donald Liebenberg and a group of eclipse experts observed the eclipse on board\
255
+ \ the Concorde and experienced 74 minutes of totality.\n\nSee also\n Solar eclipse\n\
256
+ \ Weather spotting\n Storm chasing\n\nReferences\n\nObservation hobbies\n2010s\
257
+ \ fads and trends"
258
+ - source_sentence: 'What is the primary role of davemaoite in Earth''s lower mantle?
259
+
260
+ A. It is the most abundant mineral in the crust.
261
+
262
+ B. It acts as a catalyst for mineral formation.
263
+
264
+ C. It serves as a primary source of diamonds.
265
+
266
+ D. It contributes to heat flow through radioactive decay.'
267
+ sentences:
268
+ - "McKusick–Kaufman/Bardet–Biedl syndromes putative chaperonin is a protein that\
269
+ \ in humans is encoded by the MKKS gene.\n\nThis gene encodes a protein with sequence\
270
+ \ similarity to the chaperonin family. The encoded protein may have a role in\
271
+ \ protein processing in limb, cardiac and reproductive system development. Mutations\
272
+ \ in this gene have been observed in patients with Bardet–Biedl syndrome type\
273
+ \ 6 and McKusick–Kaufman syndrome. Two transcript variants encoding the same protein\
274
+ \ have been identified for this gene.\n\nReferences\n\nExternal links\n GeneReviews/NIH/NCBI/UW\
275
+ \ entry on Bardet–Biedl syndrome\n GeneReviews/NIH/NCBI/UW entry on McKusick–Kaufman\
276
+ \ syndrome\n\nFurther reading"
277
+ - "Davemaoite is a high-pressure calcium silicate perovskite (CaSiO3) mineral\
278
+ \ with a distinctive cubic crystal structure. It is named after geophysicist Ho-kwang\
279
+ \ (Dave) Mao, who pioneered in many discoveries in high-pressure geochemistry\
280
+ \ and geophysics. \n\nIt is one of three main minerals in Earth’s lower mantle,\
281
+ \ making up around 5–7% of the material there. Significantly, davemaoite can host\
282
+ \ uranium and thorium, radioactive isotopes which produce heat through radioactive\
283
+ \ decay and contribute greatly to heating within this region giving the material\
284
+ \ a major role in how heat flows deep below the earth's surface.\n\nDavemaoite\
285
+ \ has been artificially synthesized in the laboratory, but was thought to be too\
286
+ \ extreme to exist in the Earth's crust. Then in 2021, the mineral was discovered\
287
+ \ as specks within a diamond that formed between 660 and 900 km beneath the Earth's\
288
+ \ surface, within the mantle. The diamond had been extracted from the Orapa diamond\
289
+ \ mine in Botswana. The discovery was made by focusing a high-energy beam of\
290
+ \ X-rays on precise spots within the diamond using a technique known as synchrotron\
291
+ \ X-ray diffraction. \n\nCalcium silicate is found in other forms, such as wollastonite\
292
+ \ in the crust and breyite in the middle and lower regions of the mantle. However,\
293
+ \ this version can exist only at very high pressure of around 200,000 times that\
294
+ \ found at Earth’s surface.\n\nSee also\n\n Perovskite (structure)\nList of minerals\n\
295
+ \nReferences \n\nPerovskites\nCalcium minerals"
296
+ - 'In molecular biology, the calcipressin family of proteins negatively regulate
297
+ calcineurin by direct binding. They are essential for the survival of T helper
298
+ type 1 cells. Calcipressin 1 is a phosphoprotein that increases its capacity to
299
+ inhibit calcineurin when phosphorylated at the conserved FLISPP motif; this phosphorylation
300
+ also controls the half-life of calcipressin 1 by accelerating its degradation.
301
+
302
+
303
+ In humans, the Calcipressins family of proteins is derived from three genes. Calcipressin
304
+ 1 is also known as modulatory calcineurin-interacting protein 1 (MCIP1), Adapt78
305
+ and Down syndrome critical region 1 (DSCR1). Calcipressin 2 is variously known
306
+ as MCIP2, ZAKI-4 and DSCR1-like 1. Calcipressin 3 is also called MCIP3 and DSCR1-like
307
+ 2.
308
+
309
+
310
+ References
311
+
312
+
313
+ Protein families'
314
+ pipeline_tag: sentence-similarity
315
+ library_name: sentence-transformers
316
+ metrics:
317
+ - cosine_accuracy
318
+ model-index:
319
+ - name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
320
+ results:
321
+ - task:
322
+ type: triplet
323
+ name: Triplet
324
+ dataset:
325
+ name: validation
326
+ type: validation
327
+ metrics:
328
+ - type: cosine_accuracy
329
+ value: 1.0
330
+ name: Cosine Accuracy
331
+ ---
332
+
333
+ # SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
334
+
335
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
336
+
337
+ ## Model Details
338
+
339
+ ### Model Description
340
+ - **Model Type:** Sentence Transformer
341
+ - **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision bc02f0a92d1b6dd82108036f6cb4b7b423fb7434 -->
342
+ - **Maximum Sequence Length:** 8192 tokens
343
+ - **Output Dimensionality:** 768 dimensions
344
+ - **Similarity Function:** Cosine Similarity
345
+ <!-- - **Training Dataset:** Unknown -->
346
+ <!-- - **Language:** Unknown -->
347
+ <!-- - **License:** Unknown -->
348
+
349
+ ### Model Sources
350
+
351
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
352
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
353
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
354
+
355
+ ### Full Model Architecture
356
+
357
+ ```
358
+ SentenceTransformer(
359
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
360
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
361
+ )
362
+ ```
363
+
364
+ ## Usage
365
+
366
+ ### Direct Usage (Sentence Transformers)
367
+
368
+ First install the Sentence Transformers library:
369
+
370
+ ```bash
371
+ pip install -U sentence-transformers
372
+ ```
373
+
374
+ Then you can load this model and run inference.
375
+ ```python
376
+ from sentence_transformers import SentenceTransformer
377
+
378
+ # Download from the 🤗 Hub
379
+ model = SentenceTransformer("anasse15/MNLP_M3_document_encoder")
380
+ # Run inference
381
+ sentences = [
382
+ "What is the primary role of davemaoite in Earth's lower mantle?\nA. It is the most abundant mineral in the crust.\nB. It acts as a catalyst for mineral formation.\nC. It serves as a primary source of diamonds.\nD. It contributes to heat flow through radioactive decay.",
383
+ "Davemaoite is a high-pressure calcium silicate perovskite (CaSiO3) mineral with a distinctive cubic crystal structure. It is named after geophysicist Ho-kwang (Dave) Mao, who pioneered in many discoveries in high-pressure geochemistry and geophysics. \n\nIt is one of three main minerals in Earth’s lower mantle, making up around 5–7% of the material there. Significantly, davemaoite can host uranium and thorium, radioactive isotopes which produce heat through radioactive decay and contribute greatly to heating within this region giving the material a major role in how heat flows deep below the earth's surface.\n\nDavemaoite has been artificially synthesized in the laboratory, but was thought to be too extreme to exist in the Earth's crust. Then in 2021, the mineral was discovered as specks within a diamond that formed between 660 and 900 km beneath the Earth's surface, within the mantle. The diamond had been extracted from the Orapa diamond mine in Botswana. The discovery was made by focusing a high-energy beam of X-rays on precise spots within the diamond using a technique known as synchrotron X-ray diffraction. \n\nCalcium silicate is found in other forms, such as wollastonite in the crust and breyite in the middle and lower regions of the mantle. However, this version can exist only at very high pressure of around 200,000 times that found at Earth’s surface.\n\nSee also\n\n Perovskite (structure)\nList of minerals\n\nReferences \n\nPerovskites\nCalcium minerals",
384
+ 'In molecular biology, the calcipressin family of proteins negatively regulate calcineurin by direct binding. They are essential for the survival of T helper type 1 cells. Calcipressin 1 is a phosphoprotein that increases its capacity to inhibit calcineurin when phosphorylated at the conserved FLISPP motif; this phosphorylation also controls the half-life of calcipressin 1 by accelerating its degradation.\n\nIn humans, the Calcipressins family of proteins is derived from three genes. Calcipressin 1 is also known as modulatory calcineurin-interacting protein 1 (MCIP1), Adapt78 and Down syndrome critical region 1 (DSCR1). Calcipressin 2 is variously known as MCIP2, ZAKI-4 and DSCR1-like 1. Calcipressin 3 is also called MCIP3 and DSCR1-like 2.\n\nReferences\n\nProtein families',
385
+ ]
386
+ embeddings = model.encode(sentences)
387
+ print(embeddings.shape)
388
+ # [3, 768]
389
+
390
+ # Get the similarity scores for the embeddings
391
+ similarities = model.similarity(embeddings, embeddings)
392
+ print(similarities.shape)
393
+ # [3, 3]
394
+ ```
395
+
396
+ <!--
397
+ ### Direct Usage (Transformers)
398
+
399
+ <details><summary>Click to see the direct usage in Transformers</summary>
400
+
401
+ </details>
402
+ -->
403
+
404
+ <!--
405
+ ### Downstream Usage (Sentence Transformers)
406
+
407
+ You can finetune this model on your own dataset.
408
+
409
+ <details><summary>Click to expand</summary>
410
+
411
+ </details>
412
+ -->
413
+
414
+ <!--
415
+ ### Out-of-Scope Use
416
+
417
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
418
+ -->
419
+
420
+ ## Evaluation
421
+
422
+ ### Metrics
423
+
424
+ #### Triplet
425
+
426
+ * Dataset: `validation`
427
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
428
+
429
+ | Metric | Value |
430
+ |:--------------------|:--------|
431
+ | **cosine_accuracy** | **1.0** |
432
+
433
+ <!--
434
+ ## Bias, Risks and Limitations
435
+
436
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
437
+ -->
438
+
439
+ <!--
440
+ ### Recommendations
441
+
442
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
443
+ -->
444
+
445
+ ## Training Details
446
+
447
+ ### Training Dataset
448
+
449
+ #### Unnamed Dataset
450
+
451
+ * Size: 12,689 training samples
452
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
453
+ * Approximate statistics based on the first 1000 samples:
454
+ | | sentence_0 | sentence_1 | sentence_2 |
455
+ |:--------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
456
+ | type | string | string | string |
457
+ | details | <ul><li>min: 30 tokens</li><li>mean: 84.52 tokens</li><li>max: 198 tokens</li></ul> | <ul><li>min: 94 tokens</li><li>mean: 261.34 tokens</li><li>max: 818 tokens</li></ul> | <ul><li>min: 101 tokens</li><li>mean: 257.86 tokens</li><li>max: 752 tokens</li></ul> |
458
+ * Samples:
459
+ | sentence_0 | sentence_1 | sentence_2 |
460
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
461
+ | <code>What type of model is the TaiWan Ionospheric Model (TWIM)?<br>A. A one-dimensional thermal model of the Earth's crust<br>B. A two-dimensional statistical model of atmospheric pressure<br>C. A four-dimensional quantum model of particle interactions<br>D. A three-dimensional numerical and phenomenological model of ionospheric electron density</code> | <code>The TaiWan Ionospheric Model (TWIM) developed in 2008 is a three-dimensional numerical and phenomenological model of ionospheric electron density (Ne). The TWIM has been constructed from global distributed ionosonde foF2 and foE data and vertical Ne profiles retrieved from FormoSat3/COSMIC GPS radio occultation measurements. The TWIM consists of vertically fitted α-Chapman-type layers, with distinct F2, F1, E, and D layers, for which the layer parameters such as peak density, peak density height, and scale height are represented by surface spherical harmonics. These results are useful for providing reliable radio propagation predictions and in investigation of near-Earth space and large-scale Ne distribution with diurnal and seasonal variations, along with geographic features such as the equatorial anomaly. This way the continuity of Ne and its derivatives is also maintained for practical schemes for providing reliable radio propagation predictions.<br><br>References <br><br>The information in thi...</code> | <code>Chandrasekhar–Kendall functions are the axisymmetric eigenfunctions of the curl operator, derived by Subrahmanyan Chandrasekhar and P.C. Kendall in 1957, in attempting to solve the force-free magnetic fields. The results were independently derived by both, but were agreed to publish the paper together.<br><br>If the force-free magnetic field equation is written as with the assumption of divergence free field (), then the most general solution for axisymmetric case is<br><br>where is a unit vector and the scalar function satisfies the Helmholtz equation, i.e.,<br><br>The same equation also appears in fluid dynamics in Beltrami flows where, vorticity vector is parallel to the velocity vector, i.e., .<br><br>Derivation<br><br>Taking curl of the equation and using this same equation, we get<br><br>.<br><br>In the vector identity , we can set since it is solenoidal, which leads to a vector Helmholtz equation,<br><br>.<br><br>Every solution of above equation is not the solution of original equation, but the converse is true. If is a scal...</code> |
462
+ | <code>What is the primary function of the protein encoded by the PFN2 gene?<br>A. Facilitating lipid metabolism<br>B. Regulating actin polymerization<br>C. Encoding DNA repair enzymes<br>D. Transporting oxygen in blood</code> | <code>Profilin-2 is a protein that in humans is encoded by the PFN2 gene.<br><br>The protein encoded by this gene is a ubiquitous actin monomer-binding protein belonging to the profilin family. It is thought to regulate actin polymerization in response to extracellular signals. There are two alternatively spliced transcript variants encoding different isoforms described for this gene.<br><br>Interactions<br>PFN2 has been shown to interact with ROCK1, Vasodilator-stimulated phosphoprotein, CCDC113 and FMNL1.<br><br>References<br><br>Further reading<br><br>External links</code> | <code>Stearoyl-CoA is a coenzyme involved in the metabolism of fatty acids. Stearoyl-CoA is an 18-carbon long fatty acyl-CoA chain that participates in an unsaturation reaction. The reaction is catalyzed by the enzyme stearoyl-CoA desaturase, which is located in the endoplasmic reticulum. It forms a cis-double bond between the ninth and tenth carbons within the chain to form the product oleoyl-CoA.<br><br>References<br><br>Bibliography <br><br>Metabolism<br>Thioesters of coenzyme A</code> |
463
+ | <code>Which of the following statements is true regarding the properties of certain mathematical spaces and their relevance in functional analysis?<br>A. Souslin spaces are always separable and complete metrizable.<br>B. All Polish spaces are K-analytic but not all K-analytic spaces are Polish.<br>C. The Borel graph theorem applies only to finite-dimensional spaces.<br>D. The VEZF1 gene is involved in the continuity of linear maps in functional analysis.</code> | <code>Vascular endothelial zinc finger 1 is a protein that in humans is encoded by the VEZF1 gene.<br><br>Function<br><br>Transcriptional regulatory proteins containing tandemly repeated zinc finger domains are thought to be involved in both normal and abnormal cellular proliferation and differentiation. ZNF161 is a C2H2-type zinc finger protein (Koyano-Nakagawa et al., 1994 [PubMed 8035792]). See MIM 603971 for general information on zinc finger proteins.<br><br>References<br><br>Further reading</code> | <code>In mathematics, a trivial semigroup (a semigroup with one element) is a semigroup for which the cardinality of the underlying set is one. The number of distinct nonisomorphic semigroups with one element is one. If S = { a } is a semigroup with one element, then the Cayley table of S is<br><br> {| class="wikitable"<br>|-<br>!<br>! a<br>|-<br>| a <br>| a<br>|}<br><br>The only element in S is the zero element 0 of S and is also the identity element 1 of S. However not all semigroup theorists consider the unique element in a semigroup with one element as the zero element of the semigroup. They define zero elements only in semigroups having at least two elements.<br><br>In spite of its extreme triviality, the semigroup with one element is important in many situations. It is the starting point for understanding the structure of semigroups. It serves as a counterexample in illuminating many situations. For example, the semigroup with one element is the only semigroup in which 0 = 1, that is, the zero element and the identity ele...</code> |
464
+ * Loss: <code>__main__.TripletLossWithLogging</code> with these parameters:
465
+ ```json
466
+ {
467
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
468
+ "triplet_margin": 5
469
+ }
470
+ ```
471
+
472
+ ### Training Hyperparameters
473
+ #### Non-Default Hyperparameters
474
+
475
+ - `eval_strategy`: steps
476
+ - `per_device_train_batch_size`: 16
477
+ - `per_device_eval_batch_size`: 16
478
+ - `num_train_epochs`: 1
479
+ - `fp16`: True
480
+ - `multi_dataset_batch_sampler`: round_robin
481
+
482
+ #### All Hyperparameters
483
+ <details><summary>Click to expand</summary>
484
+
485
+ - `overwrite_output_dir`: False
486
+ - `do_predict`: False
487
+ - `eval_strategy`: steps
488
+ - `prediction_loss_only`: True
489
+ - `per_device_train_batch_size`: 16
490
+ - `per_device_eval_batch_size`: 16
491
+ - `per_gpu_train_batch_size`: None
492
+ - `per_gpu_eval_batch_size`: None
493
+ - `gradient_accumulation_steps`: 1
494
+ - `eval_accumulation_steps`: None
495
+ - `torch_empty_cache_steps`: None
496
+ - `learning_rate`: 5e-05
497
+ - `weight_decay`: 0.0
498
+ - `adam_beta1`: 0.9
499
+ - `adam_beta2`: 0.999
500
+ - `adam_epsilon`: 1e-08
501
+ - `max_grad_norm`: 1
502
+ - `num_train_epochs`: 1
503
+ - `max_steps`: -1
504
+ - `lr_scheduler_type`: linear
505
+ - `lr_scheduler_kwargs`: {}
506
+ - `warmup_ratio`: 0.0
507
+ - `warmup_steps`: 0
508
+ - `log_level`: passive
509
+ - `log_level_replica`: warning
510
+ - `log_on_each_node`: True
511
+ - `logging_nan_inf_filter`: True
512
+ - `save_safetensors`: True
513
+ - `save_on_each_node`: False
514
+ - `save_only_model`: False
515
+ - `restore_callback_states_from_checkpoint`: False
516
+ - `no_cuda`: False
517
+ - `use_cpu`: False
518
+ - `use_mps_device`: False
519
+ - `seed`: 42
520
+ - `data_seed`: None
521
+ - `jit_mode_eval`: False
522
+ - `use_ipex`: False
523
+ - `bf16`: False
524
+ - `fp16`: True
525
+ - `fp16_opt_level`: O1
526
+ - `half_precision_backend`: auto
527
+ - `bf16_full_eval`: False
528
+ - `fp16_full_eval`: False
529
+ - `tf32`: None
530
+ - `local_rank`: 0
531
+ - `ddp_backend`: None
532
+ - `tpu_num_cores`: None
533
+ - `tpu_metrics_debug`: False
534
+ - `debug`: []
535
+ - `dataloader_drop_last`: False
536
+ - `dataloader_num_workers`: 0
537
+ - `dataloader_prefetch_factor`: None
538
+ - `past_index`: -1
539
+ - `disable_tqdm`: False
540
+ - `remove_unused_columns`: True
541
+ - `label_names`: None
542
+ - `load_best_model_at_end`: False
543
+ - `ignore_data_skip`: False
544
+ - `fsdp`: []
545
+ - `fsdp_min_num_params`: 0
546
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
547
+ - `fsdp_transformer_layer_cls_to_wrap`: None
548
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
549
+ - `deepspeed`: None
550
+ - `label_smoothing_factor`: 0.0
551
+ - `optim`: adamw_torch
552
+ - `optim_args`: None
553
+ - `adafactor`: False
554
+ - `group_by_length`: False
555
+ - `length_column_name`: length
556
+ - `ddp_find_unused_parameters`: None
557
+ - `ddp_bucket_cap_mb`: None
558
+ - `ddp_broadcast_buffers`: False
559
+ - `dataloader_pin_memory`: True
560
+ - `dataloader_persistent_workers`: False
561
+ - `skip_memory_metrics`: True
562
+ - `use_legacy_prediction_loop`: False
563
+ - `push_to_hub`: False
564
+ - `resume_from_checkpoint`: None
565
+ - `hub_model_id`: None
566
+ - `hub_strategy`: every_save
567
+ - `hub_private_repo`: None
568
+ - `hub_always_push`: False
569
+ - `gradient_checkpointing`: False
570
+ - `gradient_checkpointing_kwargs`: None
571
+ - `include_inputs_for_metrics`: False
572
+ - `include_for_metrics`: []
573
+ - `eval_do_concat_batches`: True
574
+ - `fp16_backend`: auto
575
+ - `push_to_hub_model_id`: None
576
+ - `push_to_hub_organization`: None
577
+ - `mp_parameters`:
578
+ - `auto_find_batch_size`: False
579
+ - `full_determinism`: False
580
+ - `torchdynamo`: None
581
+ - `ray_scope`: last
582
+ - `ddp_timeout`: 1800
583
+ - `torch_compile`: False
584
+ - `torch_compile_backend`: None
585
+ - `torch_compile_mode`: None
586
+ - `include_tokens_per_second`: False
587
+ - `include_num_input_tokens_seen`: False
588
+ - `neftune_noise_alpha`: None
589
+ - `optim_target_modules`: None
590
+ - `batch_eval_metrics`: False
591
+ - `eval_on_start`: False
592
+ - `use_liger_kernel`: False
593
+ - `eval_use_gather_object`: False
594
+ - `average_tokens_across_devices`: False
595
+ - `prompts`: None
596
+ - `batch_sampler`: batch_sampler
597
+ - `multi_dataset_batch_sampler`: round_robin
598
+
599
+ </details>
600
+
601
+ ### Training Logs
602
+ | Epoch | Step | Training Loss | validation_cosine_accuracy |
603
+ |:------:|:----:|:-------------:|:--------------------------:|
604
+ | 0.1259 | 100 | - | 1.0 |
605
+ | 0.2519 | 200 | - | 1.0 |
606
+ | 0.3778 | 300 | - | 1.0 |
607
+ | 0.5038 | 400 | - | 1.0 |
608
+ | 0.6297 | 500 | 0.1864 | 1.0 |
609
+ | 0.7557 | 600 | - | 1.0 |
610
+ | 0.8816 | 700 | - | 1.0 |
611
+ | 1.0 | 794 | - | 1.0 |
612
+
613
+
614
+ ### Framework Versions
615
+ - Python: 3.12.8
616
+ - Sentence Transformers: 4.1.0
617
+ - Transformers: 4.52.3
618
+ - PyTorch: 2.7.0+cu126
619
+ - Accelerate: 1.3.0
620
+ - Datasets: 3.6.0
621
+ - Tokenizers: 0.21.0
622
+
623
+ ## Citation
624
+
625
+ ### BibTeX
626
+
627
+ #### Sentence Transformers
628
+ ```bibtex
629
+ @inproceedings{reimers-2019-sentence-bert,
630
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
631
+ author = "Reimers, Nils and Gurevych, Iryna",
632
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
633
+ month = "11",
634
+ year = "2019",
635
+ publisher = "Association for Computational Linguistics",
636
+ url = "https://arxiv.org/abs/1908.10084",
637
+ }
638
+ ```
639
+
640
+ #### TripletLossWithLogging
641
+ ```bibtex
642
+ @misc{hermans2017defense,
643
+ title={In Defense of the Triplet Loss for Person Re-Identification},
644
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
645
+ year={2017},
646
+ eprint={1703.07737},
647
+ archivePrefix={arXiv},
648
+ primaryClass={cs.CV}
649
+ }
650
+ ```
651
+
652
+ <!--
653
+ ## Glossary
654
+
655
+ *Clearly define terms in order to be accessible across audiences.*
656
+ -->
657
+
658
+ <!--
659
+ ## Model Card Authors
660
+
661
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
662
+ -->
663
+
664
+ <!--
665
+ ## Model Card Contact
666
+
667
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
668
+ -->
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertModel"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 50281,
8
+ "classifier_activation": "gelu",
9
+ "classifier_bias": false,
10
+ "classifier_dropout": 0.0,
11
+ "classifier_pooling": "mean",
12
+ "cls_token_id": 50281,
13
+ "decoder_bias": true,
14
+ "deterministic_flash_attn": false,
15
+ "embedding_dropout": 0.0,
16
+ "eos_token_id": 50282,
17
+ "global_attn_every_n_layers": 3,
18
+ "global_rope_theta": 160000.0,
19
+ "gradient_checkpointing": false,
20
+ "hidden_activation": "gelu",
21
+ "hidden_size": 768,
22
+ "initializer_cutoff_factor": 2.0,
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 1152,
25
+ "layer_norm_eps": 1e-05,
26
+ "local_attention": 128,
27
+ "local_rope_theta": 10000.0,
28
+ "max_position_embeddings": 8192,
29
+ "mlp_bias": false,
30
+ "mlp_dropout": 0.0,
31
+ "model_type": "modernbert",
32
+ "norm_bias": false,
33
+ "norm_eps": 1e-05,
34
+ "num_attention_heads": 12,
35
+ "num_hidden_layers": 22,
36
+ "pad_token_id": 50283,
37
+ "position_embedding_type": "absolute",
38
+ "repad_logits_with_grad": false,
39
+ "sep_token_id": 50282,
40
+ "sparse_pred_ignore_index": -100,
41
+ "sparse_prediction": false,
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.52.3",
44
+ "vocab_size": 50368
45
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.3",
5
+ "pytorch": "2.7.0+cu126"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1afe355ed6a222045d5098d1bbc1a8087eea2c88771347f696b3f0c2c7b687d4
3
+ size 596070136
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 1000000000000000019884624838656,
941
+ "pad_token": "[PAD]",
942
+ "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizer",
944
+ "unk_token": "[UNK]"
945
+ }