File size: 1,750 Bytes
02b2a01
 
 
 
 
 
 
474e750
 
 
02b2a01
 
 
474e750
02b2a01
474e750
02b2a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474e750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
base_model:
- meta-llama/Meta-Llama-3-8B-Instruct
library_name: transformers
tags:
- mergekit
- merge
license: other
language:
- en
---
# Meta-Llama-3-13B-Instruct

Meta-Llama-3-13B-Instruct is a [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main).

## Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
- sources:
  - layer_range: [0, 16]
    model: meta-llama/Meta-Llama-3-8B-Instruct
- sources:
  - layer_range: [4, 24]
    model: meta-llama/Meta-Llama-3-8B-Instruct
- sources:
  - layer_range: [8, 31]
    model: meta-llama/Meta-Llama-3-8B-Instruct
merge_method: passthrough
dtype: float16

```

##  Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "andrijdavid/Meta-Llama-3-13B-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))

```