anyocr / anyocr /infer_engine.py
qianliyx's picture
Upload 13 files
645af1f verified
raw
history blame
5.37 kB
from typing import Any, Dict, List, Tuple, Union
import os
import platform
import traceback
from enum import Enum
from pathlib import Path
import numpy as np
from onnxruntime import (
GraphOptimizationLevel,
InferenceSession,
SessionOptions,
get_available_providers,
get_device,
)
class EP(Enum):
CPU_EP = "CPUExecutionProvider"
CUDA_EP = "CUDAExecutionProvider"
DIRECTML_EP = "DmlExecutionProvider"
class OrtInferSession:
def __init__(self, config: Dict[str, Any]):
self.model_path = config.get("model_path", None)
self._verify_model(self.model_path)
self.config = config
self.cfg_use_cuda = config.get("use_cuda", None)
self.cfg_use_dml = config.get("use_dml", None)
self.had_providers: List[str] = get_available_providers()
self.EP_list = self._get_ep_list()
self.sess_opt = self._init_sess_opts(self.config)
self.session = InferenceSession(
self.model_path,
sess_options=self.sess_opt,
providers=self.EP_list,
)
self._verify_providers()
@staticmethod
def _init_sess_opts(config: Dict[str, Any]) -> SessionOptions:
sess_opt = SessionOptions()
sess_opt.log_severity_level = 4
sess_opt.enable_cpu_mem_arena = False
sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
cpu_nums = os.cpu_count()
intra_op_num_threads = config.get("intra_op_num_threads", -1)
if intra_op_num_threads != -1 and 1 <= intra_op_num_threads <= cpu_nums:
sess_opt.intra_op_num_threads = intra_op_num_threads
inter_op_num_threads = config.get("inter_op_num_threads", -1)
if inter_op_num_threads != -1 and 1 <= inter_op_num_threads <= cpu_nums:
sess_opt.inter_op_num_threads = inter_op_num_threads
return sess_opt
def _get_ep_list(self) -> List[Tuple[str, Dict[str, Any]]]:
cpu_provider_opts = {
"arena_extend_strategy": "kSameAsRequested",
}
EP_list = [(EP.CPU_EP.value, cpu_provider_opts)]
cuda_provider_opts = {
"device_id": 0,
"arena_extend_strategy": "kNextPowerOfTwo",
"cudnn_conv_algo_search": "EXHAUSTIVE",
"do_copy_in_default_stream": True,
}
self.use_cuda = self._check_cuda()
if self.use_cuda:
EP_list.insert(0, (EP.CUDA_EP.value, cuda_provider_opts))
self.use_directml = self._check_dml()
if self.use_directml:
directml_options = (
cuda_provider_opts if self.use_cuda else cpu_provider_opts
)
EP_list.insert(0, (EP.DIRECTML_EP.value, directml_options))
return EP_list
def _check_cuda(self) -> bool:
if not self.cfg_use_cuda:
return False
cur_device = get_device()
if cur_device == "GPU" and EP.CUDA_EP.value in self.had_providers:
return True
return False
def _check_dml(self) -> bool:
if not self.cfg_use_dml:
return False
cur_os = platform.system()
if cur_os != "Windows":
return False
cur_window_version = int(platform.release().split(".")[0])
if cur_window_version < 10:
return False
if EP.DIRECTML_EP.value in self.had_providers:
return True
return False
def _verify_providers(self):
session_providers = self.session.get_providers()
first_provider = session_providers[0]
def __call__(self, input_content: np.ndarray) -> np.ndarray:
try:
if not self.session:
self.session = InferenceSession(
self.model_path,
sess_options=self.sess_opt,
providers=self.EP_list,
)
self._verify_providers()
input_dict = dict(zip(self.get_input_names(), [input_content]))
res = self.session.run(self.get_output_names(), input_dict)
return res
except Exception as e:
error_info = traceback.format_exc()
raise ONNXRuntimeError(error_info) from e
finally:
del input_dict
self.session = None
def get_input_names(self) -> List[str]:
return [v.name for v in self.session.get_inputs()]
def get_output_names(self) -> List[str]:
return [v.name for v in self.session.get_outputs()]
def get_character_list(self, key: str = "character") -> List[str]:
meta_dict = self.session.get_modelmeta().custom_metadata_map
return meta_dict[key].splitlines()
def have_key(self, key: str = "character") -> bool:
meta_dict = self.session.get_modelmeta().custom_metadata_map
if key in meta_dict.keys():
return True
return False
@staticmethod
def _verify_model(model_path: Union[str, Path, None]):
if model_path is None:
raise ValueError("model_path is None!")
model_path = Path(model_path)
if not model_path.exists():
raise FileNotFoundError(f"{model_path} does not exists.")
if not model_path.is_file():
raise FileExistsError(f"{model_path} is not a file.")
class ONNXRuntimeError(Exception):
pass