# Evaluation Results This directory contains comprehensive evaluation results and benchmarks for the Indonesian Embedding Model. ## Files Overview ### 📊 `comprehensive_evaluation_results.json` Complete evaluation results in JSON format, including: - **Semantic Similarity**: 100% accuracy (12/12 test cases) - **Performance Metrics**: Inference times, throughput, memory usage - **Robustness Testing**: 100% pass rate (15/15 edge cases) - **Domain Knowledge**: Technology, Education, Health, Business domains - **Vector Quality**: Embedding statistics and characteristics - **Clustering Performance**: Silhouette scores and purity metrics - **Retrieval Performance**: Precision@K and Recall@K scores ### 📈 `performance_benchmarks.md` Detailed performance analysis comparing PyTorch vs ONNX versions: - **Speed Benchmarks**: 7.8x faster inference with ONNX Q8 - **Memory Usage**: 75% reduction in memory requirements - **Cost Analysis**: 87% savings in cloud deployment costs - **Scaling Performance**: Horizontal and vertical scaling metrics - **Production Deployment**: Real-world API performance metrics ## Key Performance Highlights ### 🎯 Perfect Accuracy - **100%** semantic similarity accuracy - **Perfect** classification across all similarity ranges - **Zero** false positives or negatives ### ⚡ Exceptional Speed - **7.8x faster** than original PyTorch model - **<10ms** inference time for typical sentences - **690+ requests/second** throughput capability ### 💾 Optimized Efficiency - **75.7% smaller** model size (465MB → 113MB) - **75% less** memory usage - **87% lower** deployment costs ### 🛡️ Production Ready - **100% robustness** on edge cases - **Multi-platform** CPU compatibility - **Zero** accuracy degradation with quantization ## Test Cases Detail ### Semantic Similarity Test Pairs 1. **High Similarity** (>0.7): Technology synonyms, exact paraphrases 2. **Medium Similarity** (0.3-0.7): Related concepts, contextual matches 3. **Low Similarity** (<0.3): Unrelated topics, different domains ### Domain Coverage - **Technology**: AI, machine learning, software development - **Education**: Universities, learning, academic contexts - **Geography**: Indonesian cities, landmarks, locations - **General**: Food, culture, daily activities ### Edge Cases Tested - Empty strings and single characters - Number sequences and punctuation - Mixed scripts and Unicode characters - HTML/XML content and code snippets - Multi-language text and whitespace variations ## Benchmark Environment All tests conducted on: - **Hardware**: Apple M1 (8-core CPU) - **Memory**: 16 GB LPDDR4 - **OS**: macOS Sonoma 14.5 - **Python**: 3.10.12 ## Using the Results ### For Developers ```python import json with open('comprehensive_evaluation_results.json', 'r') as f: results = json.load(f) accuracy = results['semantic_similarity']['accuracy'] performance = results['performance'] print(f"Model accuracy: {accuracy}%") ``` ### For Production Planning Refer to `performance_benchmarks.md` for: - Resource requirements estimation - Cost analysis for your deployment scale - Expected throughput and latency metrics - Scaling recommendations ## Reproducing Results To reproduce these evaluation results: 1. **Run PyTorch Evaluation**: ```bash python examples/pytorch_example.py ``` 2. **Run ONNX Benchmarks**: ```bash python examples/onnx_example.py ``` 3. **Custom Evaluation**: ```python # Load your test cases model = IndonesianEmbeddingONNX() results = model.encode(your_sentences) # Calculate metrics ``` ## Continuous Monitoring For production deployments, monitor: - **Latency**: P50, P95, P99 response times - **Throughput**: Requests per second capacity - **Memory**: Peak and average usage - **Accuracy**: Semantic similarity on your domain --- **Last Updated**: September 2024 **Model Version**: v1.0 **Status**: Production Ready ✅