Image Classification
Birder
PyTorch
hassonofer commited on
Commit
c0c93ce
·
verified ·
1 Parent(s): 6ab4ed3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -3
README.md CHANGED
@@ -1,3 +1,137 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - birder
5
+ - pytorch
6
+ library_name: birder
7
+ license: apache-2.0
8
+ base_model:
9
+ - birder-project/hieradet_small_dino-v2
10
+ ---
11
+
12
+ # Model Card for hieradet_small_dino-v2-inat21
13
+
14
+ HieraDet small image classification model. The model follows a two-stage training process: first, DINOv2 pretraining, then fine-tuned on the `iNaturalist 2021` dataset - <https://github.com/visipedia/inat_comp/tree/master/2021>.
15
+
16
+ The model's class-to-index mapping uses original scientific names with full taxonomic rank,
17
+ a partial mapping to common names can be found here: <https://gitlab.com/birder/birder/-/blob/main/public_datasets_metadata/inat21-mapping.json>
18
+
19
+ Note: A 256 x 256 variant of this model is available as `hieradet_small_dino-v2-inat21-256px`.
20
+
21
+ ## Model Details
22
+
23
+ - **Model Type:** Image classification and detection backbone
24
+ - **Model Stats:**
25
+ - Params (M): 41.6
26
+ - Input image size: 384 x 384
27
+ - **Dataset:** iNaturalist 2021 (10000 classes)
28
+
29
+ - **Papers:**
30
+ - Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles: <https://arxiv.org/abs/2306.00989>
31
+ - SAM 2: Segment Anything in Images and Videos: <https://arxiv.org/abs/2408.00714>
32
+ - DINOv2: Learning Robust Visual Features without Supervision: <https://arxiv.org/abs/2304.07193>
33
+
34
+ - **Metrics:**
35
+ - Top-1 accuracy of 256px model @ 256: 85.52%
36
+ - Top-1 accuracy of 256px model @ 384: 86.68%
37
+ - Top-1 accuracy @ 384: 88.64%
38
+
39
+ ## Model Usage
40
+
41
+ ### Image Classification
42
+
43
+ ```python
44
+ import birder
45
+ from birder.inference.classification import infer_image
46
+
47
+ (net, model_info) = birder.load_pretrained_model("hieradet_small_dino-v2-inat21", inference=True)
48
+ # Note: A 256x256 variant is available as "hieradet_small_dino-v2-inat21-256px"
49
+
50
+ # Get the image size the model was trained on
51
+ size = birder.get_size_from_signature(model_info.signature)
52
+
53
+ # Create an inference transform
54
+ transform = birder.classification_transform(size, model_info.rgb_stats)
55
+
56
+ image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
57
+ (out, _) = infer_image(net, image, transform)
58
+ # out is a NumPy array with shape of (1, 10000), representing class probabilities.
59
+ ```
60
+
61
+ ### Image Embeddings
62
+
63
+ ```python
64
+ import birder
65
+ from birder.inference.classification import infer_image
66
+
67
+ (net, model_info) = birder.load_pretrained_model("hieradet_small_dino-v2-inat21", inference=True)
68
+
69
+ # Get the image size the model was trained on
70
+ size = birder.get_size_from_signature(model_info.signature)
71
+
72
+ # Create an inference transform
73
+ transform = birder.classification_transform(size, model_info.rgb_stats)
74
+
75
+ image = "path/to/image.jpeg" # or a PIL image
76
+ (out, embedding) = infer_image(net, image, transform, return_embedding=True)
77
+ # embedding is a NumPy array with shape of (1, 768)
78
+ ```
79
+
80
+ ### Detection Feature Map
81
+
82
+ ```python
83
+ from PIL import Image
84
+ import birder
85
+
86
+ (net, model_info) = birder.load_pretrained_model("hieradet_small_dino-v2-inat21", inference=True)
87
+
88
+ # Get the image size the model was trained on
89
+ size = birder.get_size_from_signature(model_info.signature)
90
+
91
+ # Create an inference transform
92
+ transform = birder.classification_transform(size, model_info.rgb_stats)
93
+
94
+ image = Image.open("path/to/image.jpeg")
95
+ features = net.detection_features(transform(image).unsqueeze(0))
96
+ # features is a dict (stage name -> torch.Tensor)
97
+ print([(k, v.size()) for k, v in features.items()])
98
+ # Output example:
99
+ # [('stage1', torch.Size([1, 96, 96, 96])),
100
+ # ('stage2', torch.Size([1, 192, 48, 48])),
101
+ # ('stage3', torch.Size([1, 384, 24, 24])),
102
+ # ('stage4', torch.Size([1, 768, 12, 12]))]
103
+ ```
104
+
105
+ ## Citation
106
+
107
+ ```bibtex
108
+ @misc{ryali2023hierahierarchicalvisiontransformer,
109
+ title={Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles},
110
+ author={Chaitanya Ryali and Yuan-Ting Hu and Daniel Bolya and Chen Wei and Haoqi Fan and Po-Yao Huang and Vaibhav Aggarwal and Arkabandhu Chowdhury and Omid Poursaeed and Judy Hoffman and Jitendra Malik and Yanghao Li and Christoph Feichtenhofer},
111
+ year={2023},
112
+ eprint={2306.00989},
113
+ archivePrefix={arXiv},
114
+ primaryClass={cs.CV},
115
+ url={https://arxiv.org/abs/2306.00989},
116
+ }
117
+
118
+ @misc{ravi2024sam2segmentimages,
119
+ title={SAM 2: Segment Anything in Images and Videos},
120
+ author={Nikhila Ravi and Valentin Gabeur and Yuan-Ting Hu and Ronghang Hu and Chaitanya Ryali and Tengyu Ma and Haitham Khedr and Roman Rädle and Chloe Rolland and Laura Gustafson and Eric Mintun and Junting Pan and Kalyan Vasudev Alwala and Nicolas Carion and Chao-Yuan Wu and Ross Girshick and Piotr Dollár and Christoph Feichtenhofer},
121
+ year={2024},
122
+ eprint={2408.00714},
123
+ archivePrefix={arXiv},
124
+ primaryClass={cs.CV},
125
+ url={https://arxiv.org/abs/2408.00714},
126
+ }
127
+
128
+ @misc{oquab2024dinov2learningrobustvisual,
129
+ title={DINOv2: Learning Robust Visual Features without Supervision},
130
+ author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
131
+ year={2024},
132
+ eprint={2304.07193},
133
+ archivePrefix={arXiv},
134
+ primaryClass={cs.CV},
135
+ url={https://arxiv.org/abs/2304.07193},
136
+ }
137
+ ```