--- license: llama3.1 language: - en - py library_name: transformers tags: - llama-3.1 - python - code-generation - instruction-following - fine-tune - alpaca - unsloth base_model: meta-llama/Meta-Llama-3.1-8B-Instruct datasets: - iamtarun/python_code_instructions_18k_alpaca --- --- # Llama-3.1-8B-Instruct-Python-Alpaca-Unsloth This is a fine-tuned version of Meta's **`Llama-3.1-8B-Instruct`** model, specialized for Python code generation. It was trained on the high-quality **`iamtarun/python_code_instructions_18k_alpaca`** dataset using the **Unsloth** library for significantly faster training and reduced memory usage. The result is a powerful and responsive coding assistant, designed to follow instructions and generate accurate, high-quality Python code. --- ## ## Model Details 🛠️ * **Base Model:** `meta-llama/Meta-Llama-3.1-8B-Instruct` * **Dataset:** `iamtarun/python_code_instructions_18k_alpaca` (18,000 instruction-following examples for Python) * **Fine-tuning Technique:** QLoRA (4-bit Quantization with LoRA adapters) * **Framework:** Unsloth (for up to 2x faster training and optimized memory) --- ## ## How to Use 👨‍💻 This model is designed to be used with the Unsloth library for maximum performance, but it can also be used with the standard Hugging Face `transformers` library. For the best results, always use the Llama 3 chat template. ### ### Using with Unsloth (Recommended) ```python from unsloth import FastLanguageModel import torch model, tokenizer = FastLanguageModel.from_pretrained( model_name = "YOUR_USERNAME/YOUR_MODEL_NAME", # REMEMBER TO REPLACE THIS max_seq_length = 4096, dtype = None, load_in_4bit = True, ) # Prepare the model for faster inference FastLanguageModel.for_inference(model) messages = [ { "role": "system", "content": "You are a helpful Python coding assistant. Please provide a clear, concise, and correct Python code response to the user's request." }, { "role": "user", "content": "Create a Python function that finds the nth Fibonacci number using recursion." }, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids, max_new_tokens=200, do_sample=True, temperature=0.6, top_p=0.9, eos_token_id=tokenizer.eos_token_id ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True))